

About	the	Authors

Klaus	Pohl	 holds	 a	 full	 professorship	 for	 Software	 Systems	 Engineering	 at	 the	 Institute	 for	 Computer
Science	and	Business	Information	Systems	(ICB)	at	University	of	Duisburg-Essen,	Germany.	He	was	 the
scientific	 funding	 director	 of	 Lero,	 the	 Irish	 Software	 Engineering	 Research	 Centre.	 Currently	 he	 is	 the
acting	 director	 of	 paluno—The	Ruhr	 Institute	 for	 Software	 Technology—at	 the	University	 of	 Duisburg-
Essen.	He	received	his	Ph.D.	and	his	habilitation	in	computer	science	from	RWTH	Aachen,	Germany.

Klaus	 is	 (co-)author	 of	more	 than	 250	 peer-reviewed	 publications	 and	 several	 text	 books.	 He	 served	 as
Program	and	General	Chair	for	many	international	and	national	conferences	including	the	35th	ACM/IEEE
Conference	on	Software	Engineering	 (ICSE	2013).	As	consultant,	 assessor,	 and	expert	he	 supports	 small
and	multi-national	companies,	research	institutes,	and	public	funded	research	programs.	Klaus	is	co-founder
of	 the	 IREB	 e.V.	 (International	 Requirements	 Engineering	 Board).	 You	 can	 find	 more	 information	 on
https://sse.uni-due.de.

Chris	Rupp—SOPHIST-in-chief	(formally:	founder	and	executive	partner	of	the	SOPHIST	GmbH),	chief
consultant,	coach	and	trainer.	Looking	back	over	25	years	of	professional	experience,	a	lot	has	come	up:	a

https://sse.uni-due.de

company	 .	 .	 .	6	books	 .	 .	 .	55	employees	 .	 .	 .	 countless	articles	and	presentations	 .	 .	 .	 and	a	whole	 lot	of
experience.	My	passion	for	project	consultation	might	account	for	the	fact	that,	until	now,	I	do	not	“only”
manage,	but	I	am	still	directly	involved	in	projects	and	close	to	customers.	What	drives	me	is	the	vision	to
implement	good	ideas	so	that	developers,	contractual	partners	and	users—both	direct	and	indirect—face	an
intelligent,	 sophisticated	 and	 beneficial	 product.	 In	 doing	 so,	 I	 work	 with	 a	 range	 of	 methods	 and
approaches	in	agile	and	non-agile	environments.

In	order	to	standardize	qualification	for	requirements	engineers	/	business	analysts,	I	founded	the	IREB	e.V.
(International	Requirements	Engineering	Board).	You	can	find	further	information	on	www.sophist.de.

http://www.sophist.de

Klaus	Pohl	·	Chris	Rupp

Requirements
Engineering
Fundamentals
A	Study	Guide	for	the	Certified	Professional
for	Requirements	Engineering	Exam

Foundation	Level	–	IREB	compliant

2nd	Edition

Klaus	Pohl	(klaus.pohl@sse.uni-due.de)
Chris	Rupp	(chris.rupp@sophist.de)	Translated	from	German	by	Thorsten	Weyer,	Bastian	Tenbergen,	and
Marta	Tayeh.
Editor:	Michael	Barabas
Project	Manager:	Matthias	Rossmanith
Copyeditor:	Judy	Flynn
Proofreader:	James	Johnson
Layout	and	Type:	Josef	Hegele
Cover	design:	Helmut	Kraus,	www.exclam.de
Printer:	Courier
Printed	in	USA	ISBN	978-1-937538-77-4

2nd	Edition	2015
©	2015	by	Klaus	Pohl	and	Chris	Rupp	Rocky	Nook	Inc.
802	East	Cota	St.,	3rd	Floor
Santa	Barbara,	CA	93103

www.rockynook.com

Library	of	Congress	Cataloging-in-Publication	Data	Pohl,	Klaus.
Requirements	 engineering	 fundamentals	 :	 a	 study	 guide	 for	 the	 certified	 professional	 for	 requirements
engineering	exam,	foundation	level,	IREB	compliant	/	Klaus	Pohl,	Chris	Rupp.	--	2nd	edition.
				pages	cm
ISBN	978-1-937538-77-4	(softcover	:	alk.	paper)	1.	Software	engineering--Examinations--Study	guides.	2.
System	design--Examinations--Study	guides.	3.	Requirements	engineering--Examinations--Study	guides.	4.
Electronic	data	processing	documentation--Examinations--Study	guides.	I.	Rupp,	Chris.	II.	Title.
QA76.758.P6413	2015

mailto:klaus.pohl@sse.uni-due.de
mailto:chris.rupp@sophist.de
http://www.exclam.de
http://www.rockynook.com

005.1076--dc23

2015009245

Many	of	 the	designations	 in	 this	book	used	by	manufacturers	and	sellers	 to	distinguish	 their	products	are
claimed	 as	 trademarks	 of	 their	 respective	 companies.	Where	 those	 designations	 appear	 in	 this	 book,	 and
Rocky	Nook	was	aware	of	a	 trademark	claim,	 the	designations	have	been	printed	 in	caps	or	 initial	 caps.
They	 are	 used	 in	 editorial	 fashion	 only	 and	 for	 the	 benefit	 of	 such	 companies,	 they	 are	 not	 intended	 to
convey	endorsement	or	other	affiliation	with	this	book.

No	 part	 of	 the	 material	 protected	 by	 this	 copyright	 notice	 may	 be	 reproduced	 or	 utilized	 in	 any	 form,
electronic	or	mechanical,	 including	photocopying,	 recording,	 or	 by	 any	 information	 storage	 and	 retrieval
system,	without	written	permission	of	the	copyright	owner.	While	reasonable	care	has	been	exercised	in	the
preparation	of	this	book,	the	publisher	and	author	assume	no	responsibility	for	errors	or	omissions,	or	for
damages	resulting	from	the	use	of	the	information	contained	herein.

This	book	is	printed	on	acid-free	paper.

Foreword

Dear	reader,

With	Requirements	Engineering	Fundamentals,	you	are	holding	the	official	text
book	 of	 the	 Certified	 Professional	 for	 Requirements	 Engineering	 (CPRE)	 –
Foundation	Level	certification	in	your	hands.

The	2nd	edition	of	this	book	is	aligned	with	the	curriculum	(version	2.2)	of
the	 International	 Requirements	 Engineering	 Board	 e.V.	 (IREB)	 and	 the	 IREB
glossary.	In	addition,	some	minor	defects	of	the	1st	edition	have	been	corrected.
A	short	introduction	to	the	IREB	and	the	certification	process	can	be	found	in	the
previous	 section	 “The	 Certified	 Professional	 for	 Requirements	 Engineering
(CPRE)	Exam”.

The	aim	of	 this	book	 is	 to	aid	you	 in	your	preparation	 for	 the	certification
examination	 of	 the	 Certified	 Professional	 for	 Requirements	 Engineering.	 The
book	is	suited	for	your	individual	preparation	for	the	examination	as	well	as	for
companion	literature	to	training	courses	offered	by	training	providers.

In	 addition	 to	 the	 book,	 you	 should	 consider	 the	 information	 about	 the
preparation	 for	 the	 certification	 examination	 published	 on	 the	 IREB	 website
(http://www.ireb.org/en).	 That	 additional	 information	 reflects	 updates	 of	 the
curriculum	(after	version	2.2)	and	potentially	amends	 this	book	with	respect	 to
some	areas	of	interest.	Errata	to	this	book	are	published	on	the	IREB	website.

Our	 decision	 to	 author	 this	 book	 collaboratively	 was	 not	 unjustified.	 The
book	 at	 hand	 is	 meant	 to	 integrate	 long-lasting	 practical	 experiences	 with
educational	 and	 research	 knowledge	 concerning	 the	 topic	 of	 requirements
engineering,	in	particular	for	the	Foundation	Level	of	the	Certified	Professional
for	Requirements	Engineering.	As	a	consequence,	this	book	is	based	on	the	two
best-selling	 books	 in	 the	German	 language	 about	 requirements	 engineering	 by
the	two	main	authors:

Klaus	 Pohl:	 Requirements	 Engineering	 –	 Grundlagen,	 Prinzipien,

http://www.ireb.org/en

Techniken.	Published	at	dpunkt.verlag,	Heidelberg,	2008.	This	book	was
written	 from	 a	 perspective	 of	 research	 and	 education	 and	 offers	 a
structured	 discussion	 of	 the	 fundamentals,	 principles,	 and	 techniques	 of
requirements	 engineering.	 (Also	 available	 in	 English:	 Requirements
Engineering	–	Fundamentals,	Principles,	and	Techniques.	Springer,	New
York,	2010)

Chris	 Rupp:	 Requirements-Engineering	 und	 -Management	 –	 Aus	 der
Praxis	 von	 klassisch	 bis	 agil.	 Published	 at	 Hanser	 Fachbuchverlag,
Munich,	2014.	This	book	contains	application-oriented	knowledge	about
requirements	engineering,	which	supports	the	requirements	engineer	in	his
or	her	daily	practice.	(Individual	chapters	also	available	in	English	on	the
SOPHIST	website:	http://www.sophist.de)

We	have	 chosen	 not	 to	 reference	 the	 two	 books	 listed	 above	 in	 the	 individual
chapters	of	this	book.	You	can	find	detailed	additional	information	on	the	topics
of	this	book	in	both	of	the	books	mentioned	above.

This	 book	 was	 made	 possible	 with	 the	 help	 of	 a	 number	 of	 people.	 Our
special	 thanks	 go	 to	 Dirk	 Schüpferling	 and	 Thorsten	 Weyer	 for	 their
contributions	to	this	book	and	their	outstanding	commitment,	without	which	this
book	would	 not	 have	 been	 possible.	Many	 reviews	 and	 consistent	 support	 by
other	board	members	increased	the	quality	of	this	book.	We	particularly	thank	all
board	members	of	the	IREB	for	their	active	support.	In	addition,	Urte	Pautz	of
the	Siemens	AG;	Christian	Pikalek	and	Rainer	Joppich	of	the	SOPHIST	GmbH
(www.sophist.de);	 and	 Dr.	 Kim	 Lauenroth	 and	 Nelufar	 Ulfat-Bunyadi	 from
“paluno	 –	 The	 Ruhr	 Institute	 for	 Software	 Technology”	 at	 the	 University	 of
Duisburg-Essen	(www.paluno.de)	have	contributed	to	individual	sections	of	the
book.	 Furthermore,	 we	want	 to	 thank	 Thorsten	Weyer	 and	 Bastian	 Tenbergen
(paluno)	 as	 well	 as	 Marta	 Tayeh	 (SOPHIST	 GmbH)	 for	 their	 commitment
towards	translating	this	book	from	German	into	English.	Thanks	also	to	Philipp
Schmidt	 and	 Dirk	 Schüpferling	 for	 their	 support	 in	 aligning	 this	 book	 to	 the
IREB	syllabus	version	2.2.

We	also	want	 to	 thank	Christa	Preisendanz,	Dr.	Michael	Barabas,	and	Judy
Flynn	for	their	support	in	publishing	this	book.

Klaus	Pohl	and	Chris	Rupp
Essen	and	Nuremberg,	February	2015

http://www.sophist.de
http://www.sophist.de
http://www.paluno.de

With	Contributions	from

Karol	Frühauf
INFOGEM	AG,	SAQ

Karol	Frühauf	studied	in	Bratislava	and	at	RWTH	Aachen,	gaining	his	degree	in	computer	engineering	in
1975.	He	then	spent	12	years	at	Brown,	Boveri	&	Cie	working	as	a	programmer,	head	of	quality	and	finally
as	 a	 manager	 in	 network	 control	 technology.	 In	 1987,	 Frühauf	 founded	 INFOGEM	 AG	 with	 Helmut
Sandmayr,	 and	 the	 company	 has	 since	 gained	 a	 reputation	 as	 one	 of	 the	 leading	 system	 engineering
consulting	and	training	addresses	in	Switzerland.	He	is	an	honorary	member	of	SAQ,	the	Swiss	Association
for	Quality	 and	was	 instrumental	 in	 the	 launch	of	 the	 “Brückenwächter”	 (“Bridge	Guard”)	 residence	 for
artists	and	scientists	in	Štúrovo,	Slovakia.

Emmerich	Fuchs

FUCHS-INFORMATIK	AG

Emmerich	 Fuchs	 has	 over	 30	 years	 of	 experience	 in	 application	 development.	 Since	 1985,	 he	 has	 been
working	as	a	 lecturer	at	schools	of	higher	education	and	as	a	seminar	 instructor	as	well	as	a	co-author	of
many	books	and	an	examination	expert.	In	1989,	he	founded	the	FUCHS-INFORMATIK	AG	and	is	now
working	 as	 a	 consulting	 business	 manager	 for	 renowned	 companies	 in	 the	 areas	 of	 business	 process
modeling,	requirements	engineering,	and	quality	assurance.

Prof.	Dr.	Martin	Glinz
University	of	Zurich

Martin	Glinz	is	a	full	professor	of	computer	science	and	leads	the	research	unit	Requirements	Engineering
at	 the	 University	 of	 Zurich.	 He	 is	 mainly	 interested	 in	 methods,	 languages	 and	 tools	 for	 requirement
modeling.	His	additional	fields	of	interest	include	software	engineering,	software	quality,	and	modeling.	He
obtained	 his	 doctoral	 degree	 from	 RWTH	 Aachen	 in	 computer	 science.	 Before	 he	 accepted	 the	 call	 to
Zurich,	he	worked	for	over	10	years	in	the	industry	as	a	researcher,	developer,	consultant,	and	lecturer	in	the
field	of	software	engineering.	He	is	a	member	of	the	board	of	publishers	of	Requirements	Engineering	and	a
member	 of	 the	 International	Requirements	 Engineering	Board	 (IREB).	He	was	 chairman	 of	 the	 steering
committee	for	the	International	Requirements	Engineering	Conference	from	2007–2009.

Rainer	Grau

Digitec	Galaxus

Rainer	Grau	 is	Head	of	Business	Development	 at	Digitec/Galaxus,	one	of	Switzerland’s	 top	eCommerce
companies.	 He	 and	 his	 team	 are	 responsible	 for	 innovation	 and	 portfolio	 management	 as	 well	 as	 the
implementation	of	 all	 the	 company’s	 strategic	projects.	Before	 joining	Digitec/Galaxus	he	was	a	director
and	 partner	 at	 Zühlke	 Engineering,	 where	 he	 was	 in	 charge	 of	 agility,	 lean	 management,	 requirements
engineering	and	product	management.

Rainer	Grau	 holds	 various	 teaching	 posts	 at	 Swiss	 universities	 and	 is	 actively	 involved	 in	 SAQ,	 the
Swiss	Association	for	Quality.	He	is	a	founder	member	of	the	Swiss	Agile	Leaders	Circle	where	he	supports
community	members	in	their	requirements	engineering,	enterprise	agility	and	lean	management	activities.

Rainer	Grau	likes	to	spend	his	free	time	with	his	family,	on	his	bicycle,	windsurfing,	rock	climbing	or
reading	the	latest	novels	by	T.C.	Boyle	and	Haruki	Murakami.

Colin	Hood
Colin	Hood	Systems	Engineering	Ltd.

Starting	out	in	1977,	Colin	Hood	has	accompanied	the	evolution	of	control	systems	from	their	beginnings	in
relay-based	systems	through	programmable	logic	controllers	(PLCs)	to	modern	software-controlled	safety-
critical	 systems.	His	various	 jobs	have	 included	analysis,	design,	 implementation,	 testing	and	delivery	of
complex	 software	 systems.	 Requirements	 engineering	 has	 always	 been	 the	 foundation	 of	 his	 success	 at
companies	such	as	Alcatel,	BMW,	DaimlerChrysler,	Hella	and	Miele.	As	well	as	continually	improving	the
processes	involved,	he	specializes	in	introducing	new	methods	and	tools	that	support	the	process	of	change.

Dr.	Frank	Houdek
Daimler	AG

Frank	Houdek	graduated	in	Computer	Science	at	 the	University	of	Ulm	and	joined	the	Daimler	Research
Centre	in	1995.	After	completing	his	PhD	in	empirical	software	engineering	in	1999	he	began	working	in
requirements	 engineering	 and	 has	 headed	 various	 research	 and	 technology	 transfer	 projects	 within	 the
Daimler	 passenger	 car	 and	 commercial	 vehicles	 business	 units.	 Since	 2013	 he	 has	 been	 responsible	 for
coordinating	 the	 requirements	 engineering	 activities	 for	 all	 electric/electronic	 specifications	 in	Mercedes-
Benz	passenger	car	development.

Dr.	 Houdek	 is	 a	 member	 of	 GI	 (German	 Interest	 Group	 on	 Computer	 Science)	 and	 IEEE	 CS,	 and
belongs	to	the	steering	committee	of	the	GI	Group	2.1.6	(Requirements	Engineering).	He	is	also	involved	in
the	organizational	and	program	committees	for	requirements	engineering	events	such	as	RE,	REFSQ,	and
ICSE.

He	is	responsible	for	the	Requirements	Engineering	module	of	the	Software	Engineering	for	Embedded
Systems	course	at	the	Technical	University	at	Kaiserslautern.

Dr.	Peter	Hruschka
Atlantic	Systems	Guild

Peter	Hruschka	has	been	working	as	an	independent	IT	and	management	consultant	since	1994.	His	mission
is	 the	practical	 implementation	of	new	 ideas	 in	software	engineering.	This	comprises	 the	entire	spectrum
from	 analysis	 of	 the	 initial	 situation	 via	 the	 creation	 of	 strategic	 plans	 to	 introductory	 training	 for	 every
(structured	or	object-oriented)	method	and	process	 to	guarantee	 success.	Dr.	Hruschka	 is	principal	of	 the
Atlantic	Systems	Guild,	an	internationally	renowned	group	of	experts	on	software	technology,	and	founder
of	the	German	network	of	agile	developers.

Prof.	Dr.	Barbara	Paech
University	of	Heidelberg

Barbara	Paech	is	a	professor	with	the	Institute	for	Computer	Science	of	the	University	of	Heidelberg.	Until
October	 2003,	 she	 was	 a	 department	 leader	 with	 the	 Fraunhofer	 Institute	 for	 Experimental	 Software
Engineering.	Her	area	of	research	is	software	engineering,	especially	the	methods	and	processes	necessary
to	improve	quality	with	appropriate	effort.	For	many	years,	she	has	been	active	in	the	area	of	requirements
engineering	and	usability	engineering.	Paech	and	her	group	have	implemented	many	national,	international
and	industrial	research	and	technology	transfer	projects.	She	is	a	member	of	the	International	Requirements
Engineering	Board	(IREB).

Dirk	Schüpferling
SOPHIST	GmbH

I	 am	 a	 SOPHIST	 since	 2001	 and	 the	 past	 years	 have	 led	 me	 to	 the	 conclusion	 that,	 in	 most	 cases,
communication	is	 the	key	to	(customer)	satisfaction.	What	surprised	me	was	that	features	like	laziness	or
being	a	know-it-all	can—applied	correctly—lead	to	something	positive.	The	specialist	calls	this	“reuse”	or
“identifying	potential	for	improvement”.	I	transmit	this	knowledge	as	a	classic	Requirements-Engineer,	as
well	as	in	agile	contexts	(e.g.,	as	Product	Owner)	in	various	projects.	My	job	is	to	support	the	project	team
in	the	conception	or	application	of	new	methods.

Thorsten	Weyer
University	of	Duisburg-Essen

Thorsten	Weyer	is	a	research	group	leader	at	the	University	of	Duisburg-Essen	and	Head	of	Requirements
Engineering	 and	 Conceptual	 Design	 at	 “paluno	 –	 The	 Ruhr	 Institute	 for	 Software	 Technology”	 at	 the
University	 of	Duisburg-Essen.	He	 has	worked	 for	more	 than	 a	 decade	 as	 a	 researcher	 and	 consultant	 in
requirements	 engineering,	 systems	 analysis,	 variability	 management,	 and	 model-based	 software
engineering.	 He	 is	 a	 member	 of	 the	 organizational	 and	 program	 committees	 for	 various	 scientific
conferences	 and	 also	 contributes	 his	 expertise	 to	 research	 funding	 projects	 and	 international	 trade
publications.	Thorsten	Weyer	is	a	member	of	the	International	Requirements	Engineering	Board	(IREB)	and
co-publisher	of	the	Requirements	Engineering	Magazine.

Contents

Foreword

With	Contributions	from

1	Introduction	and	Foundations

1.1	Introduction

1.1.1	Figures	and	Facts	from	Ordinary	Projects

1.1.2	Requirements	Engineering	–	What	Is	It?

1.1.3	Embedding	Requirements	Engineering	into	Process	Models

1.2	Fundamentals	of	Communication	Theory

1.3	Characteristics	of	a	Requirements	Engineer

1.4	Requirement	Types

1.5	Importance	and	Categorization	of	Quality	Requirements

1.6	Summary

2	System	and	Context	Boundaries

2.1	System	Context

2.2	Defining	System	and	Context	Boundaries

2.2.1	Defining	the	System	Boundary

2.2.2	Defining	the	Context	Boundary

2.3	Documenting	the	System	Context

2.4	Summary

3	Eliciting	Requirements

3.1	Requirements	Sources

3.1.1	Stakeholders	and	Their	Significance

3.1.2	Handling	Stakeholders	in	the	Project

3.2	Requirements	Categorization	According	to	the	Kano	Model

3.3	Elicitation	Techniques

3.3.1	Types	of	Elicitation	Techniques

3.3.2	Survey	Techniques

3.3.3	Creativity	Techniques

3.3.4	Document-centric	Techniques

3.3.5	Observation	Techniques

3.3.6	Support	Techniques

3.4	Summary

4	Documenting	Requirements

4.1	Document	Design

4.2	Types	of	Documentation

4.2.1	The	Three	Perspectives	of	Requirements

4.2.2	Requirements	Documentation	using	Natural	Language

4.2.3	Requirements	Documentation	using	Conceptual	Models

4.2.4	Hybrid	Requirements	Documents

4.3	Document	Structures

4.3.1	Standardized	Document	Structures

4.3.2	Customized	Standard	Contents

4.4	Using	Requirements	Documents

4.5	Quality	Criteria	for	Requirements	Documents

4.5.1	Unambiguity	and	Consistency

4.5.2	Clear	Structure

4.5.3	Modifiability	and	Extendibility

4.5.4	Completeness

4.5.5	Traceability

4.6	Quality	Criteria	for	Requirements

4.7	Glossary

4.8	Summary

5	Documenting	Requirements	in	Natural	Language

5.1	Effects	of	Natural	Language

5.1.1	Nominalization

5.1.2	Nouns	without	Reference	Index

5.1.3	Universal	Quantifiers

5.1.4	Incompletely	Specified	Conditions

5.1.5	Incompletely	Specified	Process	Verbs

5.2	Requirement	Construction	using	Templates

5.3	Summary

6	Model-Based	Requirements	Documentation

6.1	The	Term	Model

6.1.1	Properties	of	Models

6.1.2	Modeling	Languages

6.1.3	Requirements	Models

6.1.4	Advantages	of	Requirements	Models

6.1.5	Combined	Use	of	Models	and	Natural	Language

6.2	Goal	Models

6.2.1	Goal	Documentation	Using	AND/OR	Trees

6.2.2	Example	of	AND/OR	Trees

6.3	Use	Cases

6.3.1	UML	Use	Case	Diagrams

6.3.2	Use	Case	Specifications

6.4	Three	Perspectives	on	the	Requirements

6.5	Requirements	Modeling	in	the	Data	Perspective

6.5.1	Entity-Relationship	Diagrams

6.5.2	UML	Class	Diagrams

6.6	Requirements	Modeling	in	the	Functional	Perspective

6.6.1	Data	Flow	Diagrams

6.6.2	Models	of	the	Functional	Perspective	and	Control	Flow

6.6.3	UML	Activity	Diagrams

6.7	Requirements	Modeling	in	the	Behavioral	Perspective

6.7.1	Statecharts

6.7.2	UML	State	Diagrams

6.8	Summary

7	Requirements	Validation	and	Negotiation

7.1	Fundamentals	of	Requirements	Validation

7.2	Fundamentals	of	Requirements	Negotiation

7.3	Quality	Aspects	of	Requirements

7.3.1	Quality	Aspect	“Content”

7.3.2	Quality	Aspect	“Documentation”

7.3.3	Quality	Aspect	“Agreement”

7.4	Principles	of	Requirements	Validation

7.4.1	Principle	1:	Involvement	of	the	Correct	Stakeholders

7.4.2	Principle	2:	Separating	the	Identification	and	the	Correction	of

Errors

7.4.3	Principle	3:	Validation	from	Different	Views

7.4.4	Principle	4:	Adequate	Change	of	Documentation	Type

7.4.5	Principle	5:	Construction	of	Development	Artifacts

7.4.6	Principle	6:	Repeated	Validation

7.5	Requirements	Validation	Techniques

7.5.1	Commenting

7.5.2	Inspection

7.5.3	Walk-Through

7.5.4	Perspective-Based	Reading

7.5.5	Validation	through	Prototypes

7.5.6	Using	Checklists	for	Validation

7.6	Requirements	Negotiation

7.6.1	Conflict	Identification

7.6.2	Conflict	Analysis

7.6.3	Conflict	Resolution

7.6.4	Documentation	of	the	Conflict	Resolution

7.7	Summary

8	Requirements	Management

8.1	Assigning	Attributes	to	Requirements

8.1.1	Attributes	for	Natural	Language	Requirements	and	Models

8.1.2	Attribute	Scheme

8.1.3	Attribute	Types	of	Requirements

8.2	Views	on	Requirements

8.2.1	Selective	Views	on	the	Requirements

8.2.2	Condensed	Views	on	the	Requirements

8.3	Prioritizing	Requirements

8.3.1	Method	for	Requirements	Prioritization

8.3.2	Techniques	for	Requirements	Prioritization

8.4	Traceability	of	Requirements

8.4.1	Advantages	of	Traceable	Requirements

8.4.2	Purpose-Driven	Definition	of	Traceability

8.4.3	Classification	of	Traceability	Relations

8.4.4	Representation	of	Requirements	Traceability

8.5	Versioning	of	Requirements

8.5.1	Requirements	Versions

8.5.2	Requirements	Configurations

8.5.3	Requirements	Baselines

8.6	Management	of	Requirements	Changes

8.6.1	Requirements	Changes

8.6.2	The	Change	Control	Board

8.6.3	The	Change	Request

8.6.4	Classification	of	Incoming	Change	Requests

8.6.5	Basic	Method	for	Corrective	and	Adaptive	Changes

8.7	Measurement	of	Requirements

8.7.1	Product	vs.	Process	Metric

8.7.2	Examples	of	Product	and	Process	Metrics

8.8	Summary

9	Tool	Support

9.1	General	Tool	Support

9.2	Modeling	Tools

9.3	Requirements	Management	Tools

9.3.1	Specialized	Tools	for	Requirements	Management

9.3.2	Standard	Office	Applications

9.4	Introducing	Tools

9.5	Evaluating	Tools

9.5.1	Project	View

9.5.2	User	View

9.5.3	Product	View

9.5.4	Process	View

9.5.5	Provider	View

9.5.6	Technical	View

9.5.7	Economic	View

9.6	Summary

References

The	 glossary	 of	 those	 terms	 used	 in	 this	 book	 (IREB-Glossary)	 can	 be	 found	 on	 the	 website	 of	 the
“International	Requiremens	Engineering	Board	e.V.”

www.ireb.org/en

http://www.ireb.org/en

1	Introduction	and	Foundations

The	 impact	 of	 requirements	 engineering	 (RE)	 on	 successful	 and	 customer-
oriented	systems	development	can	no	longer	be	ignored.	It	has	become	common
practice	to	provide	resources	for	requirements	engineering.	In	addition,	there	is	a
growing	understanding	 that	 the	 role	of	 the	 requirements	engineer	 is	essentially
self-contained	and	comprises	a	series	of	demanding	activities.

1.1	Introduction

Why	perform	requirements	engineering?

According	to	the	figures	reported	in	the	Standish	Group’s	Chaos	Report	of	2006,
much	 has	 improved	 in	 the	 execution	 of	 software	 projects	 in	 the	 twelve	 years
between	 1994	 and	 2006.	 While	 about	 30	 percent	 of	 the	 software	 projects
investigated	 in	 1994	 failed,	 it	was	 a	mere	 20	 percent	 in	 2006.	The	 number	 of
projects	 that	 exceeded	 time	 or	 budget	 constraints	 significantly	 and/or	 did	 not
meet	customer	satisfaction	dropped	from	53	percent	to	46	percent	[Chaos	2006].
Jim	 Johnson,	 chairperson	 of	 the	 Standish	 Group,	 names	 three	 reasons	 for	 the
positive	development	of	 the	figures	since	1994.	One	is	 that	 the	communication
of	 requirements	 has	much	 improved	 since	 ten	 years	 ago.	 These	 figures	 are	 of
importance	since	how	the	requirements	of	a	system	are	handled	is	a	significant
cause	for	project	failures	and/or	time	and	budget	overruns.

1.1.1	Figures	and	Facts	from	Ordinary	Projects

Requirements	engineering	as	a	cause	of	errors

According	 to	 past	 studies,	 approximately	 60	 percent	 of	 all	 errors	 in	 system
development	 projects	 originate	 during	 the	 phase	 of	 requirements	 engineering
[Boehm	1981].	These	errors,	however,	are	often	discovered	only	in	later	project
phases	 or	 once	 the	 system	has	 been	 deployed	 because	 incorrect	 or	 incomplete
requirements	 can	 be	 interpreted	 by	 developers	 in	 such	 a	 fashion	 that	 they	 are
subjectively	 sound	 or	 (subconsciously)	 complete.	 Missing	 requirements	 often
remain	 undetected	 during	 design	 and	 realization	 because	 developers	 trust	 the
requirements	 engineers	 to	 deliver	 high-quality	 work.	 Developers	 implement
whatever	 the	requirements	document	says	or	what	 they	believe	 it	 to	be	saying.
Unclear,	incomplete,	or	wrong	requirements	inevitably	lead	to	the	development
of	a	system	that	does	not	possess	critical	properties	or	possesses	properties	that
were	not	requested.

Costs	of	errors	during	requirements	engineering

The	 later	 in	 the	 development	 project	 a	 defect	 in	 the	 requirements	 is
corrected,	 the	 higher	 are	 the	 costs	 associated	 with	 fixing	 it.	 For	 instance,	 the
effort	 to	 fix	 a	 requirements	defect	 is	 up	 to	20	 times	higher	 if	 the	 correction	 is
done	 during	 programming	 as	 opposed	 to	 fixing	 the	 same	 defect	 during
requirements	 engineering.	 If	 the	 defect	 is	 fixed	 during	 acceptance	 testing,	 the
effort	involved	may	be	up	to	a	100	times	higher	[Boehm	1981].

Symptoms	and	causes	of	deficient	requirements	engineering

Symptoms	for	inadequate	requirements	engineering	are	as	numerous	as	their
causes.	 Frequently,	 requirements	 are	 missing	 or	 not	 clearly	 formulated.	 For
instance,	 if	 the	 requirements	do	not	 reflect	 customer	wishes	precisely	or	 if	 the
requirements	 are	 described	 in	 an	 imprecise	 way	 and	 thus	 allow	 for	 several
interpretations,	the	result	is	often	a	system	that	does	not	meet	the	expectations	of
the	client	or	the	users.

The	most	common	reason	for	deficient	requirements	is	the	misconception	of
the	 stakeholders	 that	 much	 is	 self-evident	 and	 does	 not	 need	 to	 be	 stated
explicitly.	This	results	in	problems	in	communication	among	the	involved	parties
that	arise	from	differences	in	experience	and	knowledge.	To	make	matters	worse,
it	is	often	the	case	that	especially	the	client	wishes	for	quick	integration	of	recent
results	into	a	productive	system.

The	significance	of	good	requirements	engineering

The	 increasing	 importance	 of	 software-intensive	 systems	 in	 industrial
projects	as	well	as	the	need	to	bring	more	innovative,	more	individual,	and	more
comprehensive	systems	to	market	and	the	need	to	do	so	quicker,	better,	and	with
a	higher	 level	of	quality	calls	 for	efficient	 requirements	engineering.	Complete
requirements	free	from	defects	are	the	basis	for	successful	system	development.
Potential	 risks	have	 to	be	 identified	during	 requirements	 engineering	and	must
be	 reduced	as	early	as	possible	 to	allow	for	 successful	project	progress.	Faults
and	gaps	in	requirement	documents	must	be	discovered	early	on	to	avoid	tedious
change	processes.

1.1.2	Requirements	Engineering	–	What	Is	It?

In	 order	 to	 make	 a	 development	 project	 succeed,	 it	 is	 necessary	 to	 know	 the
requirements	for	the	system	and	to	document	them	in	a	suitable	manner.

Definition	1-1:	Requirement

(1)	 A	 condition	 or	 capability	 needed	 by	 a	 user	 to	 solve	 a	 problem	 or
achieve	an	objective.

(2)	A	condition	or	capability	that	must	be	met	or	possessed	by	a	system
or	system	component	to	satisfy	a	contract,	standard,	specification,	or
other	formally	imposed	documents.

(3)	A	documented	representation	of	a	condition	or	capability	as	in	(1)	or
(2).

[IEEE	610.12-1990]

Stakeholders

The	 term	 stakeholder	 is	 essential	 in	 requirements	 engineering.	 Among	 other
things,	 stakeholders	 are	 the	 most	 important	 sources	 of	 requirements.	 Not
considering	a	stakeholder	often	results	in	fragmentally	elicited	requirements,	i.e.,
incomplete	 requirements	 [Macaulay	 1993].	 Stakeholders	 are	 those	 people	 or
organizations	that	have	some	impact	on	the	requirements.	This	could	be	people
that	are	going	to	interact	with	the	system	(e.g.,	users	or	administrators),	people
that	 have	 a	 mere	 interest	 in	 the	 system	 but	 are	 not	 likely	 to	 use	 it	 (e.g.,	 the

management,	a	hacker	from	which	the	system	must	be	protected,	stakeholders	of
competing	 systems),	 but	 also	 legal	 entities,	 institutions,	 etc.,	 because	 these	 are
embodied	 by	 living	 people	 who	 may	 choose	 to	 influence	 or	 define	 the
requirements	of	the	system.

Definition	1-2:	Stakeholder
A	stakeholder	of	a	system	is	a	person	or	an	organization	that	has	an	(direct	or	indirect)	influence	on	the
requirements	of	the	system.

Goal	of	requirements	engineering

During	 the	 development	 process,	 requirements	 engineering	 must	 elicit	 the
stakeholders’	 requirements,	 document	 the	 requirements	 in	 a	 suitable	 manner,
validate	 and	 verify	 the	 requirements,	 and	 manage	 the	 requirements	 over	 the
course	of	the	entire	life	cycle	of	the	system	[Pohl	1996].

Definition	1-3:	Requirements	Engineering

(1)	Requirements	engineering	is	a	systematic	and	disciplined	approach	to
the	 specification	 and	 management	 of	 requirements	 with	 the
following	goals:

(1.1)	 Knowing	 the	 relevant	 requirements,	 achieving	 a	 consensus
among	 the	 stakeholders	 about	 these	 requirements,
documenting	 them	 according	 to	 given	 standards,	 and
managing	them	systematically

(1.2)	Understanding	 and	documenting	 the	 stakeholders’	 desires	 and
needs,	 they	 specifying	 and	 managing	 requirements	 to
minimize	the	risk	of	delivering	a	system	that	does	not	meet	the
stakeholders’	desires	and	needs

Four	core	activities	of	requirements	engineering

The	four	core	activities	to	meet	these	ends	are	as	follows:

Elicitation:	During	requirements	elicitation,	different	techniques	are	used	to

http://www.kbst.bund.de/

obtain	 requirements	 from	stakeholders	and	other	sources	and	 to	 refine	 the
requirements	in	greater	detail.
Documentation:	 During	 documentation,	 the	 elicited	 requirements	 are
described	 adequately.	 Different	 techniques	 are	 used	 to	 document	 the
requirements	by	using	natural	language	or	conceptual	models	(see	chapters
4,	5,	and	6).
Validation	and	negotiation:	In	order	to	guarantee	that	the	predefined	quality
criteria	are	met,	documented	requirements	must	be	validated	and	negotiated
early	on	(see	chapter	7).
Management:	 Requirements	 management	 is	 orthogonal	 to	 all	 other
activities	 and	 comprises	 any	 measures	 that	 are	 necessary	 to	 structure
requirements,	to	prepare	them	so	that	they	can	be	used	by	different	roles,	to
maintain	consistency	after	changes,	and	to	ensure	their	implementation	(see
chapter	8).

These	 core	 activities	 can	 be	 applied	 for	 different	 levels	 of	 requirements
abstraction,	 like	 stakeholder	 requirements,	 system	 requirements,	 and	 software
requirements.	 Their	 execution	 can	 follow	 different	 processes,	 such	 as	 the
processes	recommended	in	[ISO/IEC/IEEE	29148:2011].

Constraints

Different	 project	 constraints	 influence	 requirements	 engineering.	 For
instance,	 people,	 domain	 factors,	 or	 organizational	 constraints	 (e.g.,	 spatial
distribution	or	temporal	availability	of	project	members)	have	a	large	impact	on
the	choice	of	suitable	techniques.

1.1.3	Embedding	Requirements	Engineering	into	Process	Models

Requirements	engineering	as	a	self-contained	phase

Ponderous	 process	 models	 (e.g.,	 the	Waterfall	 model	 [Royce	 1987]	 or	 the	 V-
Model	 [V-Modell	 2004])	 aim	 at	 completely	 eliciting	 and	 documenting	 all
requirements	in	an	early	project	phase	before	any	design	or	realization	decisions
are	made.	The	goal	of	such	models	is	to	elicit	all	requirements	prior	to	the	actual
development.	As	a	result,	 in	 these	process	models,	 requirements	engineering	 is
understood	to	be	a	finite,	time-restricted	initial	phase	of	system	development.

Requirements	engineering	as	a	continuous,	collateral	process

Lightweight	process	models	 (e.g.,	 eXtreme	Programming	 [Beck	1999]),	 on
the	other	hand,	only	elicit	necessary	requirements	once	they	are	supposed	to	be
implemented	as	“foretelling”	future	functionalities	 is	difficult	and	requirements
change	 over	 the	 course	 of	 the	 project.	 In	 these	 process	 models,	 requirements
engineering	 is	 treated	 as	 a	 continuous,	 comprehensive	 process	 that	 comprises
and	integrates	all	phases	of	system	development.

1.2	Fundamentals	of	Communication	Theory

Language	as	a	medium	for	requirement	communication

Requirements	 must	 be	 communicated.	 In	 most	 cases,	 one	 uses	 a	 rule-driven
medium	that	is	accessible	to	the	communication	partner—natural	language.

For	the	transmission	of	information	from	one	individual	to	another	to	work
properly,	 a	 common	 code	 is	 needed.	The	 sender	 encodes	 her	message	 and	 the
receiver	has	to	decode	it.	Such	a	common	code	is	intrinsic	to	any	two	people	that
speak	the	same	language	(e.g.,	German),	have	the	same	cultural	background,	and
have	 similar	 experiences.	 The	 more	 similar	 the	 cultural	 and	 educational
background,	 the	 area	 of	 expertise,	 and	 the	 everyday	 work	 life,	 the	 better	 the
exchange	of	 information	works.	However,	 such	 ideal	 conditions	most	often	do
not	exist	between	stakeholders.	It	is	therefore	sensible	to	agree	upon	a	common
language	and	how	this	common	language	is	to	be	used.	This	can,	for	instance,	be
achieved	by	means	of	glossaries	(see	chapter	4),	in	which	all	important	terms	are
explained.	Alternatively,	this	can	be	done	by	agreeing	upon	a	formal	descriptive
language,	e.g.,	OMG’s	Unified	Modeling	Language,	UML	(see	chapter	6).

Type	of	communication	medium

Another	 important	 factor	 is	 the	 type	 of	 communication	medium.	 In	 verbal
communication,	the	success	of	the	communication	relies	heavily	on	redundancy
(e.g.,	language	and	gestures	or	language	and	intonation)	and	feedback.	In	written
technical	 communication,	 for	 example,	 information	 is	 transmitted	 with	 a
minimum	of	redundancy	and	feedback.

Language	comfort

In	addition	 to	 the	problems	arising	from	differing	domain	vocabularies	and
different	communication	media,	it	can	often	be	observed	that	information	is	not
adequately	 transmitted	 or	 not	 transmitted	 at	 all.	 This	 can	 be	 traced	 back	 to
natural	 transformations	 that	 occur	 during	 human	 perception.	 These
transformational	 effects	 are,	 in	 particular,	 focusing	 and	 simplification	 and	 can
impact	the	communication	more	or	less	harshly.

Implicit	background	knowledge

Communication—i.e.,	 the	 language-based	 expression	 of	 knowledge—is
necessarily	 simplifying	 in	 nature.	 The	 author	 expects	 the	 reader	 to	 have	 some
kind	of	implicit	background	knowledge.	It	is	the	simplifications	that	arise	from
language-based	 knowledge	 expression	 that	 become	 problematic	with	 regard	 to
requirements,	 as	 requirements	 can	 become	 interpretable	 in	 different	 ways.	 In
chapter	 5,	 natural	 language-based	 requirement	 documentation	 is	 discussed	 in
further	detail.

1.3	Characteristics	of	a	Requirements	Engineer

Central	role

The	 requirements	 engineer	 as	 a	 project	 role	 is	 often	 at	 the	 center	 of	 attention.
She	is	usually	the	only	one	who	has	direct	contact	with	the	stakeholders	and	has
both	the	ability	and	the	responsibility	to	become	as	familiar	as	possible	with	the
domain	and	to	understand	it	as	well	as	possible.	She	is	the	one	that	identifies	the
needs	 underlying	 the	 stakeholders’	 statements	 and	 amends	 them	 in	 a	way	 that
architects	 and	 developers—usually	 laymen	 where	 the	 domain	 in	 question	 is
concerned—can	understand	and	implement	them.	The	requirements	engineer	is,
in	a	manner	of	speaking,	a	translator	that	understands	the	domain	as	well	as	its
particular	language	well	enough	and	also	possesses	enough	IT	know-how	to	be
aware	of	the	problems	the	developers	face	and	to	be	able	to	communicate	with
them	on	the	same	level.	The	requirements	engineer	therefore	has	a	central	role	in
the	project.

Seven	necessary	capabilities	of	a	requirements	engineer

To	be	able	 to	 fulfill	all	of	her	 tasks,	 the	requirements	engineer	needs	much

more	than	process	knowledge.	Many	of	the	capabilities	required	must	be	based
on	practical	experience.

Analytic	 thinking:	 The	 requirements	 engineer	 must	 be	 able	 to	 become
familiar	 with	 domains	 that	 are	 unknown	 to	 her	 and	must	 understand	 and
analyze	 complicated	 problems	 and	 relationships.	 Since	 stakeholders	 often
discuss	 problematic	 requirements	 by	 means	 of	 concrete	 examples	 and
(suboptimal)	 solutions,	 the	 requirements	engineer	must	be	able	 to	abstract
from	the	concrete	statements	of	the	stakeholder.
Empathy:	The	requirements	engineer	has	the	challenging	task	of	identifying
the	actual	needs	of	a	stakeholder.	A	core	requirement	to	be	able	to	achieve
this	is	to	have	good	intuition	and	empathy	for	people.	In	addition,	she	must
identify	 problems	 that	 might	 arise	 in	 a	 group	 of	 stakeholders	 and	 act
accordingly.
Communication	skills:	To	elicit	 the	requirements	from	stakeholders	and	to
interpret	 them	 correctly	 and	 communicate	 them	 in	 a	 suitable	 manner,	 a
requirements	engineer	must	have	good	communication	skills.	She	must	be
able	 to	 listen,	 ask	 the	 right	 questions	 at	 the	 right	 time,	 notice	 when	 a
statement	 does	 not	 contain	 the	 desired	 information,	 and	 make	 further
inquiries	when	necessary.
Conflict	 resolution	 skills:	Different	 opinions	 of	 different	 stakeholders	 can
be	the	cause	of	conflicts	during	requirements	engineering.	The	requirements
engineer	must	identify	conflicts,	mediate	between	the	parties	involved,	and
apply	techniques	suitable	to	resolving	the	conflict.
Moderation	 skills:	 The	 requirements	 engineer	 must	 be	 able	 to	 mediate
between	 different	 opinions	 and	 lead	 discussions.	 This	 holds	 true	 for
individual	conversations	as	well	as	group	conversations	and	workshops.
Self-confidence:	Since	the	requirements	engineer	is	frequently	at	the	center
of	 attention,	 she	occasionally	 is	 exposed	 to	 criticism	as	well.	As	 a	 result,
she	needs	a	high	 level	of	self-confidence	and	 the	ability	 to	defend	herself
should	 strong	 objections	 to	 her	 opinions	 arise.	 She	 should	 never	 take
criticism	personally.
Persuasiveness:	 Among	 other	 things,	 the	 requirements	 engineer	 is,	 in	 a
matter	 of	 speaking,	 a	 kind	 of	 attorney	 for	 the	 requirements	 of	 the
stakeholders.	 She	 must	 be	 able	 to	 represent	 the	 requirements	 in	 team
meetings	 and	 presentations.	 In	 addition,	 she	 must	 consolidate	 differing
opinions,	 facilitate	 a	 decision	 in	 case	 of	 a	 disagreement,	 and	 create
consensus	among	the	stakeholders.

1.4	Requirement	Types

Generally,	one	can	distinguish	between	three	types	of	requirements:

Functional	 requirements	 define	 the	 functionality	 that	 the	 system	 to	 be
developed	 offers.	 Usually,	 these	 requirements	 are	 divided	 into	 functional
requirements,	behavioral	 requirements,	and	data	 requirements	 (see	chapter
4).

Definition	1-4:	Functional	Requirement
A	functional	requirement	 is	a	requirement	concerning	a	result	of	behavior	 that	shall	be	provided	by	a
function	of	the	system.

Quality	requirements	define	desired	qualities	of	the	system	to	be	developed
and	 often	 influence	 the	 system	 architecture	 more	 than	 functional
requirements	do.	Typically,	quality	requirements	are	about	the	performance,
availability,	 dependability,	 scalability,	 or	 portability	 of	 a	 system.
Requirements	 of	 this	 type	 are	 frequently	 classified	 as	 non-functional
requirements.

Definition	1-5:	Quality	Requirement
A	 quality	 requirement	 is	 a	 requirement	 that	 pertains	 to	 a	 quality	 concern	 that	 is	 not	 covered	 by
functional	requirements.

Constraints	 cannot	 be	 influenced	 by	 the	 team	members.	Requirements	 of
this	 type	 can	 constrain	 the	 system	 itself	 (e.g.,	 “The	 system	 shall	 be
implemented	 using	 web	 services”)	 or	 the	 development	 process	 (“The
system	shall	be	available	on	the	market	no	later	than	the	second	quarter	of
2012”).	 In	 contrast	 to	 functional	 and	quality	 requirements,	 constraints	 are
not	implemented,	they	are	adhered	to	because	they	merely	limit	the	solution
space	available	during	the	development	process.

Definition	1-6:	Constraint
A	constraint	 is	a	 requirement	 that	 limits	 the	solution	space	beyond	what	 is	necessary	 for	meeting	 the
given	functional	requirements	and	quality	requirements.

In	 addition	 to	 the	 classification	 into	 functional	 requirements,	 quality
requirements,	 and	 constraints,	 a	 number	 of	 different	 classifications	 of
requirements	 are	 used	 in	 practice.	 For	 example,	 there	 are	 a	 number	 of
classifications	suggested	by	several	standards,	e.g.,	CMMI	[SEI	2006]	or	SPICE
[ISO/IEC	 15504-5].	 Other	 classification	 schemes	 describe	 requirement
attributes,	such	as	the	level	of	detail	of	a	requirement,	the	priority,	or	the	degree
of	legal	obligation	of	requirements	(see	chapters	4	and	8).

1.5	Importance	and	Categorization	of	Quality	Requirements

In	 daily	 practice,	 quality	 requirements	 of	 a	 system	 are	 often	 not	 documented,
inadequately	 documented,	 or	 improperly	 negotiated.	 Such	 circumstances	 can
threaten	the	project’s	success	or	the	subsequent	acceptance	of	the	system	under
development.	 Therefore,	 the	 requirements	 engineer	 should	 place	 special
emphasis	 on	 the	 elicitation,	 documentation,	 and	 negotiation	 of	 quality
requirements	during	the	development	process.

Typically,	 many	 different	 kinds	 of	 desired	 qualities	 of	 the	 system	 are
assigned	to	the	requirement	type	quality	requirement.	In	order	to	be	able	to	deal
with	quality	 requirements	 in	 a	 structured	manner,	many	different	 classification
schemes	for	quality	requirements	have	been	proposed.	The	ISO/IEC	25010:2011
standard	 [ISO/IEC	25010:2011],	 for	 example,	 suggests	 a	 classification	 scheme
for	 quality	 requirements	 that	 can	 also	 be	 used	 as	 a	 standard	 structure	 for
requirements	documentation	and	as	a	checklist	 for	 requirements	elicitation	and
validation.	 Among	 others,	 the	 following	 categories	 are	 typical	 for	 quality
requirements	(see	[ISO/IEC	25010:2011]):

Requirements	 that	 define	 the	 performance	 of	 the	 system,	 in	 particular
response	time	behavior	and	resource	utilization
Requirements	 that	 define	 the	 security	 of	 the	 system,	 in	 particular	 with
regard	to	accountability,	authenticity,	confidentiality,	and	integrity
Requirements	that	define	the	reliability	of	functionalities,	in	particular	with
regard	to	availability,	fault	tolerance,	and	recoverability
Requirements	that	define	the	usability	of	a	system,	in	particular	with	regard
to	accessibility,	learnability,	and	ease	of	use
Requirements	that	define	the	maintainability	of	a	system,	in	particular	with
regard	to	reusability,	analyzability,	changeability,	and	testability
Requirements	 that	 define	 the	 portability	 of	 a	 system,	 in	 particular	 with

regard	to	adaptability,	installability,	and	replaceability

Currently,	 quality	 requirements	 are	 often	 specified	 using	 natural	 language.
However,	numerous	approaches	to	document	quality	requirements	by	means	of
models	have	been	suggested	over	the	past	couple	of	years.

The	 requirements	 engineer	 is	 responsible	 for	 making	 sure	 the	 quality
requirements	 are	 as	 objective	 and	 verifiable	 as	 possible.	 Typically,	 this
necessitates	that	the	quality	requirements	are	quantified.	For	example,	a	quality
requirement	with	regard	to	system	performance	could	specify	that	a	system	shall
process	 95	 percent	 of	 all	 queries	within	 1.5	 seconds	 and	 that	 it	must	 not	 take
longer	 than	 4	 seconds	 to	 process	 queries	 at	 any	 given	 time.	 This	 can	 cause
quality	 requirements	 to	 be	 refined	 by	 means	 of	 additional	 functional
requirements.	This	could	be	the	case	for	a	quality	requirement	that	is	concerned
with	 system	security	 if	 a	 functional	 requirement	 specifies	 the	 exact	 encryption
algorithm	 to	 satisfy	 the	 need	 for	 encryption	 as	 demanded	 by	 some	 quality
requirement.

Quality	 requirements	 are	 often	 related	 to	 different	 functional	 requirements.
As	 a	 result,	 quality	 requirements	 should	 always	 be	 kept	 separated	 from
functional	 requirements.	 In	 other	 words,	 quality	 requirements	 should	 not	 be
mixed	with	functional	requirements	and	should	be	documented	separately,	with
explicit	documentation	of	their	relation	to	functional	requirements.

1.6	Summary

Requirements	engineering	can	hardly	be	avoided,	especially	when	systems	are	to
be	developed	that	satisfy	customers	and	meet	budget	constraints	and	schedules.
The	goal	of	requirements	engineering	is	to	document	customer	requirements	as
completely	as	possible	 in	good	quality	and	 to	 identify	and	resolve	problems	 in
the	 requirements	 as	 early	 as	 possible.	 Successful	 requirements	 engineering	 is
based	 on	 including	 the	 right	 stakeholders	 as	 well	 as	 embedding	 the	 four	 core
activities	 of	 requirements	 engineering	 (elicitation,	 documentation,	 validation
and	negotiation,	and	management)	into	the	system	development	process.	At	the
center	of	attention	is	the	requirements	engineer,	who	is	the	primary	contact	point
in	 requirements	 engineering	 and	 possesses	 a	 great	 deal	 of	 domain	 knowledge
and	process	knowledge	as	well	as	a	multitude	of	soft	skills.

2	System	and	Context	Boundaries

The	requirements	for	a	system	to	be	developed	do	not	simply	exist,	they	have	to
be	 elicited.	 The	 purpose	 of	 defining	 the	 system	 and	 context	 boundaries	 in
requirements	 engineering	 is	 to	 identify	 the	 part	 of	 the	 environment	 that
influences	the	requirements	for	the	system	to	be	developed.

2.1	System	Context

Anticipate	the	system	in	operation

In	 the	 development	 process,	 requirements	 engineering	 fulfils	 the	 task	 of
identifying	all	 those	material	and	immaterial	aspects	that	have	a	relationship	to
the	system.	In	order	to	do	that,	it	is	anticipated	what	the	system	will	be	like	once
it	becomes	real.	By	doing	so,	those	parts	of	the	real	world	which	will	potentially
influence	the	requirements	of	the	system	can	be	identified.	To	be	able	to	specify
the	requirements	for	a	system	correctly	and	completely,	it	is	necessary	to	identify
the	relationships	between	individual	material	and	immaterial	aspects	as	precisely
as	possible.	The	part	of	reality	that	is	relevant	for	the	requirements	of	a	system	is
called	the	system	context.

Definition	2-1:	System	Context
The	system	context	is	the	part	of	the	system	environment	that	is	relevant	for	the	definition	as	well	as	the
understanding	of	the	requirements	of	a	system	to	be	developed.

Context	aspects	in	the	system	context

Among	others,	the	following	possible	aspects	of	reality	influence	the	context	of

a	system:

People	(stakeholders	or	groups	of	stakeholders)
Systems	in	operation	(other	technical	systems	or	hardware)
Processes	(technical	or	physical	processes,	business	processes)
Events	(technical	or	physical)
Documents	(e.g.,	laws,	standards,	system	documentation)

Consequence	of	erroneous	or	incomplete	context	consideration

If	 the	 system	 context	 is	 incorrectly	 or	 incompletely	 considered	 during
requirements	engineering,	it	may	result	in	incomplete	or	erroneous	requirements.
This	 leads	 to	 the	 system	 operating	 on	 the	 basis	 of	 incomplete	 or	 erroneous
requirements,	which	is	often	the	reason	for	system	failure	during	operation.	Such
errors	 often	 remain	 undetected	 during	 the	 validation	 procedures,	 which
determine	if	the	system	meets	the	specified	requirements,	and	occur	only	during
operation,	sometimes	entailing	catastrophic	consequences.

System	context	and	requirement	context

The	origin	of	the	system’s	requirements	lies	within	the	context	of	the	system
to	 be	 developed.	 For	 example,	 stakeholders,	 pertinent	 standards,	 and	 legal
guidelines	 demand	 particular	 functional	 properties	 that	 the	 system	 to	 be
developed	must	possess	at	its	interfaces.	A	requirement	is	therefore	defined	for	a
specific	context	and	can	only	be	 interpreted	correctly	 in	 regard	 to	 this	 specific
context.	The	better	 the	context	of	a	requirement	 is	understood	(e.g.,	why	is	 the
technical	system	“X”	in	the	system	context	the	origin	of	some	requirement),	the
lower	the	likelihood	of	 incorrect	 interpretation	of	 the	requirement.	Therefore,	a
purpose-driven	 documentation	 of	 the	 system	 context	 or	 information	 about	 the
system	context	is	of	particular	importance.

2.2	Defining	System	and	Context	Boundaries

It	is	within	the	responsibility	of	the	requirements	engineer	to	define	the	system
context	properly.	In	order	to	do	so,	it	is	necessary	to	separate	the	system	context
from	 the	 system	 to	 be	 developed	 as	well	 as	 from	 the	 parts	 of	 reality	 that	 are
irrelevant	for	the	system	(see	figure	2-1):

Defining	 the	 system	 boundary:	 When	 defining	 the	 system	 boundary,	 a
decision	 has	 to	 be	 made:	 Which	 aspects	 pertain	 to	 the	 system	 to	 be
developed	and	which	aspects	belong	in	the	system	context?
Defining	 the	 context	 boundary:	When	 defining	 the	 context	 boundary,	 the
question	 to	 be	 answered	 is:	Which	 aspects	 pertain	 to	 the	 system	 context
(i.e.,	have	a	relation	to	the	system	to	be	developed)	and	which	aspects	are
part	of	the	irrelevant	environment?

Figure	2-1	System	and	context	boundary	of	a	system

System	and	context	boundaries	define	the	system	context.

Thus,	 system	 and	 context	 boundaries	 define	 the	 system	 context.	 The	 system
context	 comprises	 all	 aspects	 that	 are	 relevant	with	 regard	 to	 the	 requirements
for	the	system	to	be	developed.	These	aspects	cannot	be	altered	or	modified	by
the	system	development	process.

2.2.1	Defining	the	System	Boundary

The	system	boundary	separates	the	object	of	concern	(i.e.,	 the	system)	from	its
environment.	 When	 the	 system	 boundary	 is	 defined,	 the	 scope	 of	 the
development	(i.e.,	the	aspects	that	are	covered	by	the	system	to	be	developed)	as
well	as	the	aspects	that	are	not	part	of	the	system	are	determined.	We	therefore
define	the	system	boundary	as	follows:

Definition	2-2:	System	Boundary
The	system	boundary	separates	the	system	to	be	developed	from	its	environment;	i.e.,	 it	separates	the
part	 of	 the	 reality	 that	 can	 be	 modified	 or	 altered	 by	 the	 development	 process	 from	 aspects	 of	 the
environment	that	cannot	be	changed	or	modified	by	the	development	process.

All	 aspects	 that	 are	 within	 the	 system	 boundary	 can	 thus	 be	 altered	 during
system	development.	For	instance,	an	existing	system	that	consists	of	hardware
and	software	components	and	is	supposed	to	be	replaced	by	the	new	system	can
be	 within	 the	 system	 boundary.	 Aspects	 within	 the	 system	 context	 can	 be
business	 processes,	 technical	 processes,	 people	 and	 roles,	 organizational
structures,	 and	 components	 of	 the	 IT	 infrastructure.	 Figure	 2-2	 schematically
shows	 the	 system	 context	 of	 a	 system.	 The	 system	 context	 consists	 of	 other
systems,	 groups	 of	 stakeholders	 that	 in	 some	 way	 use	 the	 interfaces	 of	 the
system	 to	 be	 developed,	 and	 additional	 requirements	 sources	 and	 their
interrelations.

Figure	2-2	Types	of	aspects	within	the	system	context

Sources	and	sinks	as	the	starting	point

Among	other	things,	sources	and	sinks	(see,	e.g.,	[DeMarco	1978])	can	be	used
to	 identify	 the	 interfaces	 the	system	has	with	 its	environment.	Sources	provide
inputs	 for	 the	 system.	Sinks	 receive	outputs	 from	 the	 system.	Possible	 sources
and	sinks	of	a	system	are	as	follows:

(Groups	of)	stakeholders
Existing	systems	(both	technical	and	nontechnical	systems)

Interfaces:	interaction	between	system	and	environment

Sources	and	sinks	interact	with	the	system	to	be	developed	via	system	interfaces.

Using	these	interfaces,	the	system	provides	its	functionality	to	the	environment,
monitors	 the	 environment,	 influences	 parameters	 of	 the	 environment,	 and
controls	operations	of	the	environment.	Depending	on	the	type	of	the	respective
source	or	sink,	the	system	needs	different	interface	types	(e.g.,	human–machine
interface,	 hardware	 interface,	 or	 software	 interface).	The	 interface	 type	 in	 turn
may	 also	 impose	 specific	 constraints	 or	 additional	 sources	 of	 requirements	 on
the	system	to	be	developed.

Gray	zone	between	system	and	system	context

Frequently,	the	system	boundary	is	not	precisely	defined	until	the	end	of	the
requirements	engineering	process.	Before	that,	some	or	several	interfaces	as	well
as	 desired	 functions	 and	 qualities	 of	 the	 system	 to	 be	 developed	 are	 only
partially	known	or	not	known	at	all.	We	refer	to	this	initially	vague	separation	of
the	system	and	its	context	as	the	gray	zone	between	the	system	and	the	context
(see	 figure	 2-3).	 At	 the	 beginning	 of	 the	 requirements	 engineering	 process,	 it
may,	 for	example,	not	be	clear	whether	 the	system	should	 implement	a	certain
function	 (e.g.,	 “pay	 by	 credit	 card”)	 or	whether	 there	 is	 another	 system	 in	 the
system	 context	 providing	 such	 a	 function	 that	 should	 be	 used	 (e.g.,	 “payment
processing”).

Adjusting	the	gray	zone

The	system	boundary	may	not	only	shift	within	the	gray	zone	(in	figure	2-
3)	 but	 also	 the	 gray	 zone	 itself	may	 shift	 during	 the	 requirements	 engineering
process	(in	figure	2-3).	This	kind	of	shifting	is	caused	by	the	fact	that	aspects,
pertaining	 at	 first	 to	 the	 system	 context,	 now	will	 be	modified	 during	 system
development.	 Such	 a	 situation	 occurs	 during	 requirements	 engineering,	 for
example,	 if	 it	 is	 not	 clear	 in	 the	 system	context	whether	 certain	 activities	 of	 a
business	 process	 should	 be	 implemented	 or	 supported	 by	 the	 system	 to	 be
developed	 or	 not.	 In	 this	 situation,	 it	 is	 not	 clear	which	 aspects	 belong	 to	 the
system	 and	 can	 thus	 be	 changed	 or	modified	 and	which	 aspects	 belong	 to	 the
system	 context.	 This	 causes	 a	 corresponding	 shift	 of	 the	 gray	 zone	 between
system	and	system	context	(see	figure	2-3).

Figure	2-3	Gray	zone	of	the	system	boundary

The	gray	zone	shifts,	 for	 instance,	when	 interfaces	are	attributed	 to	 the	system
boundary	and	the	gray	zone	is	extended	to	comprise	aspects	of	the	environment
that	concern	these	interfaces.

2.2.2	Defining	the	Context	Boundary

The	context	boundary	distinguishes	between	context	aspects,	 i.e.,	 those	aspects
of	 the	 environment	 that	 need	 to	 be	 taken	 into	 account	 during	 requirements
engineering	(e.g.,	as	requirements	sources)	and	those	aspects	that	are	irrelevant
for	the	system.	The	context	boundary	can	be	defined	as	follows:

Definition	2-3:	Context	Boundary
The	context	boundary	separates	the	relevant	part	of	the	environment	of	a	system	to	be	developed	from
the	irrelevant	part,	i.e.,	the	part	that	does	not	influence	the	system	to	be	developed	and,	thus,	does	not
have	to	be	considered	during	requirements	engineering.

Concretion	and	shift	of	the	context	boundary

At	the	beginning	of	the	requirements	engineering	process,	frequently	only	part	of
the	environment	as	well	as	single	specific	relationships	between	the	environment
and	 the	 system	 to	 be	 developed	 are	 known.	 In	 the	 course	 of	 requirements
engineering,	 it	 is	necessary	 to	concretize	 the	boundary	between	system	context
and	irrelevant	environment	by	analyzing	relevant	aspects	within	the	environment
with	regard	to	their	relationships	to	the	system.	Besides	the	system	boundary,	the
context	 boundary	 typically	 also	 shifts	 during	 requirements	 engineering.	 For

instance,	 it	 may	 be	 possible	 that	 a	 law	 directive	 that	 was	 considered	 to	 be
relevant	 for	 the	 system	 to	be	developed	no	 longer	 impacts	 the	 system	or	 is	no
longer	considered	relevant.	The	system	context	is	therefore	reduced	(in	figure
2-4).	 If	a	new	law	directive	 is	 identified	 that	 influences	 the	system,	 the	system
context	is	extended	accordingly	(in	figure	2-4).

Figure	2-4	Gray	zone	between	system	context	and	irrelevant	environment

Gray	zone	between	system	context	and	irrelevant	environment

Since	 the	 context	 boundary	 separates	 the	 system	 context	 from	 those	 parts	 of
reality	that	are	irrelevant	to	the	system,	a	complete	and	precise	definition	of	the
context	 boundary	 for	 complex	 systems	 is	 virtually	 impossible.	 In	 addition,	 it
may	not	be	possible	to	clarify	for	single	aspects	of	the	environment	whether	they
influence	the	system	to	be	developed	or	are	 influenced	by	 it	or	not.	These	 two
observations	are	 the	 reason	 for	 the	existence	of	a	gray	zone	with	 regard	 to	 the
context	boundary	(see	figure	2-4).

Resolving	and	shifting	of	the	gray	zone

This	gray	zone	therefore	comprises	identified	aspects	of	the	environment	for
which	it	is	unclear	whether	they	have	a	relation	to	the	system	or	not.	In	contrast
to	 the	 gray	 zone	 between	 the	 system	 and	 the	 system	 context	 that	 must	 be
resolved	in	the	course	of	requirements	engineering,	it	is	not	necessary	to	resolve
the	 gray	 zone	 between	 the	 system	 context	 and	 the	 irrelevant	 environment
entirely.

2.3	Documenting	the	System	Context

In	 order	 to	 document	 the	 system	 context	 (especially	 the	 system	 and	 context
boundaries),	“use	case”	diagrams	[Jacobson	et	al.	1992]	(see	sections	4.2.3	and
6.3.1)	 or	 “data	 flow”	 diagrams	 [DeMarco	 1978]	 (see	 section	 6.6.1)	 are	 often
used.	When	the	context	is	modeled	with	data	flow	diagrams,	sources	and	sinks	in
the	 environment	 of	 the	 system	 that	 represent	 the	 source	 or	 destination	 of	 data
flows	 (or	 flows	 of	 material,	 energy,	 money,	 etc.)	 are	 modeled.	 In	 use	 case
diagrams,	 actors	 (such	 as	 people	 or	 other	 systems)	 in	 the	 system	 environment
and	 their	 usage	 relationships	 to	 the	 system	 are	modeled.	To	model	 the	 system
context,	UML	class	diagrams	[OMG	2007]	(see	section	6.5.2)	may	also	be	used.
In	order	to	document	the	system	context	of	a	system	as	thoroughly	as	possible,
typically	several	documentation	forms	are	used.

2.4	Summary

The	 system	 context	 is	 the	 part	 of	 the	 reality	 that	 influences	 the	 system	 to	 be
developed	and	thus	also	influences	the	requirements	for	the	system.	In	order	to
be	able	to	elicit	the	requirements	for	the	system	to	be	developed,	it	is	necessary
to	define	the	boundary	of	the	system	to	the	system	context	and	the	boundary	of
the	 system	 context	 to	 the	 irrelevant	 environment	 first.	 When	 the	 system
boundaries	 are	 defined,	 the	 scope	 of	 the	 system	 is	 determined.	 The	 scope
comprises	 those	 aspects	 that	 can	 be	 changed	 and	 designed	 during	 system
development.	At	 the	 same	 time,	 it	 is	 also	 defined	which	 aspects	 belong	 to	 the
environment	 and	 thus	 cannot	 be	 altered	 during	 development	 and	may	 provide
constraints	for	the	system	to	be	developed.

The	context	boundary	separates	 the	part	of	 the	environment	 that	 influences
the	 requirements	 for	 the	 system	 to	 be	 developed	 from	 that	 part	 that	 does	 not
influence	 the	 requirements.	 Typical	 aspects	 within	 the	 system	 context	 are
stakeholders	 (e.g.,	 the	users	of	 the	system)	and	documents	 (e.g.,	 standards	 that
have	to	be	considered)	as	well	as	other	systems	that,	for	 instance,	 interact	with
the	 system	 to	 be	 developed.	 Defining	 the	 system	 and	 context	 boundaries
successfully	is	the	foundation	for	a	systematic	elicitation	of	requirements	for	the
system	to	be	developed.

3	Eliciting	Requirements

A	core	activity	of	requirements	engineering	is	the	elicitation	of	requirements	for
the	 system	 to	 be	 developed.	 The	 basis	 for	 requirements	 elicitation	 is	 the
knowledge	 that	 has	 been	 gained	 during	 requirements	 engineering	 about	 the
system	context	of	the	system	to	be	developed,	which	comprises	the	requirements
sources	that	are	to	be	analyzed	and	queried.

3.1	Requirements	Sources

Three	types	of	requirements	sources

There	are	three	different	kinds	of	requirements	sources:

Stakeholders	(see	section	1.1.2)	are	people	or	organizations	that	(directly	or
indirectly)	 influence	 the	 requirements	 of	 a	 system.	 Examples	 of
stakeholders	 are	 users	 of	 the	 system,	operators	 of	 the	 system,	developers,
architects,	customers,	and	testers.
Documents	 often	 contain	 important	 information	 that	 can	 provide
requirements.	 Examples	 of	 documents	 are	 universal	 documents,	 such	 as
standards	and	legal	documents,	as	well	as	domain-or	organization-specific
documents,	 such	 as	 requirements	 documents	 and	 error	 reports	 of	 legacy
systems.
Systems	 in	 operation	 can	 be	 legacy	 or	 predecessor	 systems	 as	 well	 as
competing	systems.	By	giving	 the	stakeholders	a	chance	 to	 try	 the	system
out,	 they	 can	 gain	 an	 impression	 of	 the	 current	 system	 and	 can	 request
extensions	or	changes	based	on	their	impressions.

3.1.1	Stakeholders	and	Their	Significance

Significance	of	stakeholders

Identifying	 the	 relevant	 stakeholders	 is	 a	 central	 task	 of	 requirements
engineering	 [Glinz	 and	 Wieringa	 2007].	 For	 the	 requirements	 engineer,
stakeholders	 are	 important	 sources	of	 requirements	 for	 the	 system	 (see	 section
1.1.2).	 It	 is	 the	 task	 of	 the	 requirements	 engineer	 to	 gather,	 document,	 and
consolidate	 the	 partially	 conflicting	 goals	 and	 requirements	 of	 different
stakeholders	[Potts	et	al.	1994]	(see	chapter	8).

Consequences	of	unconsidered	stakeholders

If	 stakeholders	 are	 not	 identified	 or	 not	 considered,	 it	 may	 result	 in
significant	negative	repercussions	for	the	project	progress	because	requirements
may	remain	undetected.	At	 the	 latest,	 these	overlooked	requirements	will	enter
the	picture	in	the	form	of	change	requests	during	system	operation.	Fixing	these
issues	 retroactively	 causes	 high	 additional	 costs.	 Therefore,	 it	 is	 essential	 to
identify	all	stakeholders	and	integrate	them	into	the	elicitation	procedures.

Stakeholder	lists	provide	overview.

An	 auxiliary	 technique	 for	 stakeholder	 identification	 is	 maintaining
checklists.	 This	 allows	 for	 systematic	 and	 targeted	 elicitation	 of	 relevant
stakeholders.	If	the	stakeholder	list	is	updated	too	late	or	incompletely,	the	result
may	be	that	important	aspects	of	the	system	remain	undetected,	that	the	project
goal	 is	missed,	or	 that	significant	additional	costs	arise	from	fixing	issues.	The
starting	 point	 for	 stakeholder	 elicitation	 is	 often	 suggestions	 of	 relevant
stakeholders	that	are	made	by	management	or	by	domain	experts,	for	example.
On	the	basis	of	these	suggestions,	relevant	stakeholders	can	be	identified.

3.1.2	Handling	Stakeholders	in	the	Project

Managing	stakeholders

It	 can	 often	 be	 observed	 in	 practice	 that	 a	 lot	 of	 stakeholders	 are	 involved	 in
complex	and	“difficult”	projects.	Due	to	limited	resources,	the	stakeholders	that

are	the	most	suitable	for	requirements	elicitation	must	be	carefully	selected.	To
document	 the	 stakeholders	 in	 the	 development	 process,	 it	 makes	 sense	 to	 use
tables	and	spreadsheets	that	contain	(at	least)	the	following	data:	name,	function
(role),	 additional	 personal	 and	 contact	 data,	 temporal	 and	 spatial	 availability
during	 the	 project	 progress,	 relevance	 of	 the	 stakeholder,	 area	 and	 extent	 of
expertise	of	the	stakeholder,	and	the	stakeholder’s	goals	and	interests	regarding
the	project.

Making	collaborators	out	of	the	affected

Handling	 stakeholders	 also	 means	 continuously	 exchanging	 information:
Periodic	status	updates	and	continuous	involvement	of	the	stakeholders	assist	the
requirements	 engineer	 in	 turning	 people	 previously	 simply	 affected	 by	 the
project	 (i.e.,	 principally	 affected	 stakeholders)	 into	 collaborators	 (i.e.,	 well-
integrated,	jointly	responsible	stakeholders).

Individual	“contracts”	with	the	stakeholders

Stakeholders	 that	 are	 not	 given	 enough	 attention	 by	 the	 requirements
engineer	 might	 be	 overly	 critical	 toward	 the	 project.	 In	 addition,	 some
stakeholders	 may	 show	 a	 lack	 of	 motivation	 because	 they	 are	 sufficiently
satisfied	with	 the	 legacy	system,	are	afraid	of	change,	or	are	negatively	biased
due	 to	 previous	 projects.	 It’s	 the	 requirements	 engineer’s	 task	 to	 support	 the
project	manager	 in	convincing	all	stakeholders	of	 the	benefit	of	 the	project.	To
avoid	 misunderstandings	 and	 disputes	 regarding	 competence,	 it	 is	 useful	 to
formally	agree	on	the	tasks,	responsibilities,	and	managerial	authority	as	well	as
to	determine	individual	goals,	communication	paths,	and	feedback	loops	that	can
be	used	by	the	stakeholders.	Depending	on	the	culture	of	 the	organization,	 this
agreement	and	determination	can	be	done	verbally	(i.e.,	by	“shaking	hands”)	or,
more	 formally,	by	means	of	written	documentation.	The	 individual	agreements
should	be	signed	off	by	the	managers.

Obligations	and	privileges	of	the	stakeholders

A	number	of	obligations	 and	privileges	 result	 from	 the	 agreement	with	 the
stakeholders.

The	requirements	engineer

speaks	the	language	of	the	stakeholders,
becomes	thoroughly	familiar	with	the	application	domain,
creates	a	requirements	document,
is	able	to	get	work	results	across	(e.g.,	by	means	of	diagrams	and	graphs),
maintains	a	respectful	relationship	with	any	stakeholder,
presents	her	ideas	and	alternatives	as	well	as	their	realizations,
allows	 stakeholders	 to	 demand	 properties	 that	 make	 the	 system	 user-
friendly	and	simple,
ensures	 that	 the	system	satisfies	 the	functional	and	qualitative	demands	of
the	stakeholders.

The	stakeholders

introduce	the	requirements	engineer	to	the	application	domain,
supply	the	requirements	engineer	with	requirements,
document	requirements	assiduously,
make	timely	decisions,
respect	the	requirements	engineer’s	estimates	of	costs	and	feasibility,
prioritize	requirements,
inspect	the	requirements	that	the	requirements	engineer	documents,	such	as
prototypes,	etc.,
communicate	changes	in	requirements	immediately,
adhere	to	the	predetermined	change	process,
respect	the	requirements	engineering	process	that	has	been	instated.

Elicitation	techniques	determine	communication	and	process.

In	 addition,	 the	 requirements	 engineer	 plans	 and	 organizes	 the	 communication
paths	 as	well	 as	 drafts	 a	 structured	 schedule	 for	 the	 requirements	 engineering
activities	 that	 are	 to	 be	 performed	 in	 collaboration	with	 the	 stakeholders.	This
organization	and	the	type	of	communication	are	significantly	influenced	by	the
elicitation	techniques	that	can	be	used	during	requirements	engineering.

3.2	Requirements	Categorization	According	to	the	Kano	Model

Influence	of	the	requirements	on	satisfaction

Knowing	the	importance	of	a	requirement	for	the	satisfaction	of	the	stakeholders
is	very	helpful	for	requirements	elicitation.	Along	with	the	respective	properties
of	a	product	that	determine	the	satisfaction,	the	satisfaction	is	classified	into	the
following	three	categories	[Kano	et	al.	1984]:

Dissatisfiers	are	properties	of	the	system	that	are	self-evident	and	taken	for
granted	(subconscious	knowledge).
Satisfiers	 are	 explicitly	 demanded	 system	 properties	 (conscious
knowledge).
Delighters	 are	 system	 properties	 that	 the	 stakeholder	 does	 not	 know	 or
expect	 and	 discovers	 only	while	 using	 the	 system—a	pleasant	 and	 useful
surprise	(unconscious	knowledge).

As	 time	 goes	 by,	 delighters	 turn	 into	 satisfiers	 and	 dissatisfiers	 as	 the	 user
becomes	 accustomed	 to	 the	 properties	 of	 the	 system.	 When	 eliciting
requirements,	all	three	categories	must	be	considered.

Figure	3-1	Graphical	representation	of	the	Kano	model

Dissatisfiers

Dissatisfiers	(subconscious	requirements)	must	be	fulfilled	by	the	system	in	any
case.	Otherwise,	stakeholders	will	be	disappointed	and	dissatisfied.	Completely
fulfilled	 dissatisfiers	 do	 not	 generate	 a	 positive	 disposition	 but	merely	 help	 to
avoid	 massive	 discontent.	 Dissatisfiers	 are	 dominantly	 influenced	 by	 existing
systems.	Therefore,	observation	and	document-centric	techniques	are	especially
well	suited	for	the	elicitation	of	these	factors.

Satisfiers

Satisfiers	(conscious	requirements)	are	properties	that	are	consciously	known
to	the	stakeholders	and	explicitly	demanded.	When	these	properties	are	fulfilled,
stakeholders	 are	 content	 and	 satisfied,	 which	 is	 desirable.	 If	 some	 demanded
properties	 are	 missing,	 the	 stakeholders	 probably	 will	 not	 accept	 the	 product.
Their	satisfaction	decreases	with	each	missing	satisfier.	Satisfiers	can	be	elicited

well	using	survey	techniques.

Delighters

Delighters	 (unconscious	 requirements)	 are	 properties	 of	 a	 system	 whose
value	is	recognized	only	when	the	stakeholder	can	try	out	the	system	for	herself
or	 the	 requirements	 engineer	 proposes	 them.	 Creativity	 techniques	 are	 best
suited	to	elicit	delighters.

3.3	Elicitation	Techniques

Requirements	elicitation:	no	universal	method

The	 main	 goal	 of	 all	 elicitation	 techniques	 is	 in	 supporting	 the	 requirements
engineer	 in	 ascertaining	 the	 knowledge	 and	 requirements	 of	 the	 stakeholders.
How	 and	 when	 a	 technique	 can	 be	 applied	 depends	 on	 the	 given	 conditions.
Applying	the	technique	consciously	and	in	a	fashion	appropriate	to	the	situation
at	hand	allows	for	tailoring	the	requirements	elicitation	process	which	takes	into
account	 project	 constraints	 so	 that	 requirements	may	be	 elicited	 as	 completely
and	comprehensibly	as	possible.

3.3.1	Types	of	Elicitation	Techniques

Influencing	factors	regarding	the	choice	of	elicitation	techniques

Elicitation	 techniques	 serve	 the	 purpose	 of	 identifying	 the	 conscious,
unconscious,	 and	 subconscious	 stakeholder	 requirements.	However,	 there	 is	no
universal	method	 to	 elicit	 these	 requirements	 [Hickey	 and	Davis	 2003].	Every
project	 has	 individual	 constraints	 and	 individual	 characteristics	 and	 is	 by	 and
large	unique,	but	there	are	always	elicitation	techniques	that	are	compatible	with
the	 project.	 The	 most	 important	 influencing	 factors	 when	 choosing	 the
appropriate	elicitation	techniques	are	as	follows:

the	 distinction	 between	 conscious,	 unconscious,	 and	 subconscious
requirements	that	are	to	be	elicited
the	 time	 and	 budget	 constraints,	 as	 well	 as	 the	 availability	 of	 the

stakeholders
the	 experience	 of	 the	 requirements	 engineer	 with	 a	 particular	 elicitation
technique
the	chances	and	risks	of	the	project

Risk	factors

The	 first	 important	 step	 when	 choosing	 a	 suitable	 elicitation	 technique	 is	 to
perform	 an	 analysis	 of	 constraints	 critical	 to	 the	 project,	 i.e.,	 identifying	 so-
called	 risk	 factors.	 Mostly,	 these	 result	 from	 human,	 organizational,	 and
professional	influences,	as	illustrated	in	the	following	passages.

Human	influences

During	the	requirements	elicitation	phase,	which	is	heavily	influenced	by	the
stakeholders,	 good	 communication	 is	 essential.	 In	 order	 to	 assure	 high-quality
communication	 between	 the	 requirements	 engineer	 and	 stakeholders,	 it	 is
important	 to	determine	 the	 type	of	requirement,	 the	desired	 level	of	detail,	and
the	experience	of	the	requirements	engineer	and	the	interviewees	with	different
elicitation	techniques.

Social,	 group-dynamic,	 and	 cognitive	 capabilities	 of	 the	 stakeholders	 also
influence	 the	 choice	 of	 suitable	 elicitation	 techniques	 significantly.	 Another
influence	 factor	 is	 whether	 the	 elicited	 knowledge	 is	 explicit	 (consciously
known)	 by	 each	 individual	 stakeholder	 or	 if	 it	 is	 implicit	 or	 unconscious	 (i.e.,
covert).

Organizational	influences

Organizational	risk	factors	the	project	faces	need	to	be	investigated	as	well.
Among	other	things,	this	comprises	the	distinction	between	fixed	price	contracts
and	service	contracts,	whether	the	system	to	be	built	is	a	new	development	or	an
extension	 of	 a	 legacy	 system,	 and	 spatial	 and	 temporal	 availability	 of	 the
stakeholders.

Operational	influences	of	the	content

In	 addition,	 it	 is	 necessary	 to	 consider	 the	 operational	 content	 of	 the
requirements.	 If	 the	 system	 is	 very	 complex,	 it	 is	 advisable	 to	 employ	 a

structuring	 approach	 during	 elicitation	 in	 order	 to	 deconstruct	 the	 operational
contents	into	understandable	parts.

Combine	techniques	with	regard	to	your	particular	situation	to	lower
risks.

Another	 influencing	 factor	 on	 the	 choice	 of	 elicitation	 techniques	 is	 the
desired	level	of	detail	of	the	requirements.	Abstract	requirements	can	be	elicited
rather	 well	 using	 creativity	 techniques.	With	 the	 stakeholders,	 a	 vision	 of	 the
system	 or	 its	 important	 properties	 can	 be	 created	 or	 collected.	 Inquisitive
(survey)	techniques	or	observational	techniques	can	aid	in	eliciting	requirements
of	a	medium	level	of	detail	[Robertson	2002].	Finely	detailed	requirements	can
be	elicited	well	by	making	use	of	document-centric	 techniques,	 i.e.,	 techniques
that	use	existing	documents	because	information	up	to	an	arbitrary	level	of	detail
can	be	extracted	from	these.

It	is	advisable	to	combine	different	techniques	because	this	minimizes	many
of	 the	 risks	 inherent	 to	 the	 project.	 Weaknesses	 and	 pitfalls	 of	 a	 particular
technique	can	be	balanced	out	through	the	use	of	another	technique	whose	strong
points	lie	where	the	first	technique	may	have	deficits.

3.3.2	Survey	Techniques

Eliciting	explicit	knowledge

Survey	techniques	aim	at	eliciting	as	precise	and	unbiased	statements	as	possible
from	 stakeholders	 regarding	 their	 requirements.	 All	 survey	 techniques	 assume
that	the	respondent	is	capable	of	explicitly	expressing	his	or	her	knowledge	and
that	he	or	she	is	committed	to	investing	time	and	effort	for	the	elicitation.	Survey
techniques	are	usually	driven	by	the	requirements	engineer	because	she	asks	the
questions.	This,	however,	might	 result	 in	 the	fact	 that	stakeholder	concerns	are
forgotten,	superseded,	or	disregarded.

Interview

During	 an	 interview,	 the	 requirements	 engineer	 asks	 predetermined
questions	 to	 one	 or	 more	 stakeholders	 and	 documents	 the	 answers.
Questions	that	arise	during	the	conversation	can	be	discussed	immediately,

and	 the	 requirements	 engineer	 may	 uncover	 subconscious	 requirements
through	 clever	 questions.	 Interviews	 can	 be	 employed	 during	 the	 entire
development	phase	of	the	system.	An	experienced	interviewer	individually
controls	the	course	of	the	conversation,	completely	commits	herself	to	each
stakeholder,	 inquires	 about	 specific	 aspects,	 and	 thus	 ensures	 the
completeness	 of	 the	 answers.	 The	 most	 prominent	 disadvantage	 of	 this
elicitation	technique	is	that	it	is	very	time-consuming.

Questionnaire

Questionnaire:	Making	use	of	open	and/or	closed	questions	(e.g.,	multiple
choice	 questions)	 is	 another	 way	 of	 eliciting	 requirements	 from
stakeholders.	 If	 there	 are	 a	 large	 number	 of	 participants	 that	 must	 be
surveyed,	 an	 online	 questionnaire	 is	 a	 viable	 option.	 Questionnaires	 can
elicit	a	magnitude	of	information	in	a	short	amount	of	time	and	at	low	costs.
As	long	as	answers	are	predetermined,	even	stakeholders	 that	are	not	able
to	 explicitly	 express	 their	 knowledge	 can	 deliver	 an	 assessment.	 A
disadvantage	 of	 using	 a	 questionnaire	 is	 that	 it	 can	 be	 only	 employed	 to
gather	 requirements	 the	 requirements	 engineer	 already	 knows	 or
conjectures.	 Creating	 a	 proper	 questionnaire	 is	 often	 tricky	 and	 time-
consuming	and	requires	thorough	knowledge	of	the	domain	in	question	and
the	 psychological	 guidelines	 for	 creating	 questionnaires.	 In	 addition,	 as
opposed	 to	 interviews,	 questionnaires	 do	not	 provide	 immediate	 feedback
between	 the	 surveyor	 and	 the	 surveyed,	 so	 it	 becomes	 apparent	 that
questions	were	forgotten	or	badly	formulated	only	once	the	questionnaires
have	been	evaluated.

3.3.3	Creativity	Techniques

Establishing	innovations

Creativity	 techniques	serve	 the	purpose	of	developing	innovative	requirements,
delineating	 an	 initial	 vision	 of	 the	 system,	 and	 eliciting	 excitement	 factors.
Creativity	 techniques	 are	 usually	 not	 well	 suited	 for	 establishing	 fine-grained
requirements	about	the	system	behavior.	The	following	creativity	techniques	are
commonly	used	[Maiden	and	Gizikis	2001]:	Brainstorming

During	 brainstorming,	 ideas	 are	 collected	 within	 a	 certain	 time	 frame,
usually	 in	 groups	 of	 5	 to	 10	 people.	 The	 ideas	 are	 documented	 by	 a
moderator	 without	 discussing,	 judging,	 or	 commenting	 on	 them	 at	 first.
Participants	use	ideas	of	other	participants	to	develop	new	original	ideas	or
to	modify	existing	 ideas.	After	 that,	 the	collected	 ideas	 are	 subjected	 to	 a
thorough	 analysis.	 This	 technique	 is	 especially	 effective	 when	 a	 large
number	of	people	of	different	stakeholder	groups	are	involved.	Among	the
advantages	of	this	technique	is	that	a	large	number	of	ideas	can	be	collected
in	 a	 short	 amount	 of	 time	 and	multiple	 people	 can	 expand	on	 these	 ideas
collaboratively.	The	unbiased	collection	of	these	ideas	allows	new	solutions
to	pop	up.	Brainstorming	is	usually	less	effective	when	the	dynamics	of	the
group	 are	 muddled	 or	 when	 participants	 with	 very	 varied	 levels	 of
dominance	 are	 involved.	 For	 such	 situations,	 other	 creativity	 techniques
may	 be	 better	 suited,	 e.g.,	 the	 6-3-5	method	 (six	 participants,	 three	 ideas
each,	 fivefold	 hand-off	 of	 the	 ideas)	 [Rohrbach	 1969]	 or	 the	 brainwriting
method.

Brainstorming	paradox

Brainstorming	paradox	 is	 a	modification	 of	 regular	 brainstorming	 in	 that
events	 that	 must	 not	 occur	 are	 collected.	 Afterward,	 the	 group	 develops
measures	 to	prevent	 the	events	collected	earlier	 from	happening.	Through
this	 process,	 participants	 often	 realize	 which	 actions	 may	 entail	 negative
results.	 With	 this	 method,	 risks	 can	 be	 identified	 early	 on	 and
countermeasures	 can	be	developed.	Advantages	 and	disadvantages	of	 this
technique	are	identical	to	those	of	classic	brainstorming.

Change	of	perspective

Change	 of	 perspective:	 Among	 the	 techniques	 that	 employ	 a	 change	 of
perspective	 (adopting	 different	 extreme	 standpoints),	 the	 most	 common
technique	 is	 the	 so-called	Six	Thinking	Hats	 [DeBono	2006].	Each	of	 the
six	hats	represents	a	particular	perspective	that	is	in	turn	adopted	by	each	of
the	 participants.	 The	 resulting	 solutions	 approach	 the	 problem	 from
different	standpoints.	That	way,	even	stakeholders	 that	are	very	convinced
of	 their	 own	 opinion	 are	 persuaded	 to	 adopt	 a	 different	 standpoint.	 This
technique	is	extraordinarily	beneficial	when	stakeholders	can	only	express
their	 knowledge	 in	 a	 biased	 manner	 or	 are	 harshly	 constricted	 to	 their

opinions.	 On	 the	 other	 hand,	 this	 technique	 cannot	 be	 applied	 if	 the
requirements	 require	 a	 fine-grained	 level	 of	 detail	 because	 this	 would
render	the	technique	very	laborious.

Analogy	technique

Analogy	 techniques	 (bionics/bisociations):	 In	 bionics,	 problems	 that	 the
project	faces	are	mapped	to	an	analogous	situation	occurring	in	nature,	and
the	 solutions	 nature	 provides	 are	 sought	 and	 then	 mapped	 back	 to	 the
project.	 In	 bisociation,	 the	 analogies	 need	 not	 originate	 in	 nature.	 These
techniques	 assume	 that	 each	 participant	 is	 capable	 of	 analogous	 thinking,
that	 a	 lot	 of	 time	 is	 available,	 and	 that	 the	 participants	 have	 an	 in-depth
knowledge	of	 the	domain	with	which	an	analogy	will	be	drawn.	Analogy
techniques	can	be	applied	covertly	or	 in	 the	open.	When	 this	 technique	 is
applied	 covertly,	 the	 participants	 are	 only	 told	 the	 analogy.	 The
requirements	engineer	 is	 then	responsible	for	mapping	the	results	onto	the
real	 problem	 space.	 When	 this	 technique	 is	 applied	 in	 the	 open,	 the
stakeholders	know	the	real	problem	space	as	well	as	the	analogy.

3.3.4	Document-centric	Techniques

Document-centric	techniques	reuse	solutions	and	experiences	made	with	existing
systems.	When	a	legacy	system	is	replaced,	this	technique	ensures	that	the	entire
functionality	 of	 the	 legacy	 system	 can	 be	 identified.	 Document-centric
techniques	 should	 be	 combined	 with	 other	 elicitation	 techniques	 so	 that	 the
validity	of	the	elicited	requirements	can	be	determined	and	new	requirements	for
the	new	system	can	be	identified.

System	archaeology

System	 archaeology	 is	 a	 technique	 that	 extracts	 information	 required	 to
build	a	new	system	from	the	documentation	or	implementation	(code)	of	a
legacy	 system	 or	 a	 competitor’s	 system.	 The	 technique	 is	 often	 applied
when	explicit	knowledge	about	 the	system	logic	has	been	 lost	partially	or
entirely.	By	analyzing	existing	code,	the	requirements	engineer	ensures	that
none	of	the	functionalities	of	the	legacy	system	will	be	overlooked	and	the
system	logic	of	the	legacy	system	is	elicited	anew.	This	method	leads	to	a

large	amount	of	very	detailed	requirements	and	is	very	laborious.	However,
system	 archaeology	 is	 the	 only	 technique	 that	 can	 ensure	 that	 all
functionalities	of	the	legacy	system	will	be	implemented	in	the	new	system.
When	 it	 becomes	 obviously	 apparent	 that	 the	 legacy	 system	 and	 the	 new
system	 differ	 in	 functionality,	 additional	 elicitation	 techniques,	 e.g.,
creativity	techniques,	must	be	applied	early	on.

Perspective-based	reading

Perspective-based	 reading	 (see	 section	 7.5.4)	 is	 applied	when	 documents
need	to	be	read	with	a	particular	perspective	in	mind,	e.g.,	 the	perspective
of	the	implementer	or	the	tester.	Aspects	that	are	contained	in	the	document
but	do	not	pertain	to	the	current	perspective	are	ignored.	This	allows	for	an
analysis	 that	 is	 strictly	 focused	 on	 particular	 parts	 of	 the	 existing
documentation.	This	way,	 detailed,	 technology-related	 or	 implementation-
related	aspects	can	be	separated	from	essential	operational	aspects	that	are
relevant	for	the	successor	system.

Reuse

Reuse:	Requirements	that	have	been	previously	compiled	and	brought	up	to
a	 certain	 quality	 standard	 can	 be	 reused.	 In	 order	 to	 do	 that,	 the
requirements	are	stored	in	a	database,	for	instance,	and	kept	available	at	the
required	level	of	detail	for	reuse.	Through	reuse,	the	costs	involved	with	the
elicitation	procedures	can	be	significantly	reduced.

3.3.5	Observation	Techniques

Question	observations	and	optimize	processes.

When	 domain	 specialists	 are	 unable	 to	 spend	 the	 time	 needed	 to	 share	 their
expertise	with	 the	 requirements	 engineer,	 or	 are	 unable	 to	 express	 and	 denote
their	 knowledge,	 observation	 techniques	 are	 helpful.	 During	 observation,	 the
requirements	engineer	observes	the	stakeholders	while	they	go	about	their	work.
The	requirements	engineer	documents	all	steps	and	thus	elicits	the	processes	the
system	must	support	as	well	as	potential	mistakes,	risks,	and	open	questions.	All
those	are	potential	requirements	that	need	to	be	formulated.	The	stakeholders	can

actively	 demonstrate	 their	 knowledge	 in	 using	 the	 application	 or	 can	 remain
passive,	 with	 the	 requirements	 engineer	 merely	 observing.	 The	 requirements
engineer	 ought	 to	 question	 the	 observed	 processes	 so	 that	 the	 situation	 as	 it
should	be	can	be	established.	Otherwise,	she	is	at	risk	of	documenting	outdated
technological	decisions	and	suboptimal	processes	(i.e.,	the	situation	as	is	and	not
as	 it	 should	 be).	 As	 the	 requirements	 engineer	 is	 an	 external	 observer,	 her
chances	of	 identifying	 inefficient	processes	 are	good	and	 she	can	 then	 suggest
better	solutions.	She	is	farther	removed	from	the	processes	than	the	stakeholders,
who	 frequently	 repeat	 work	 steps	 without	 questioning	 them	 critically.
Observation	 techniques	 are	 well	 suited	 to	 elicit	 detailed	 requirements	 and
dissatisfiers	 because	 the	 requirements	 engineer	 can	 recognize	 dissatisfiers
thought	of	as	self-evident	or	only	subconsciously	known	by	the	stakeholders.	In
addition,	 the	 requirements	 engineer	 becomes	 very	 familiar	 with	 the	 domain
language,	which	simplifies	further	elicitation.	Satisfiers	can	only	be	observed	if
they	have	been	 implemented	 in	 the	 legacy	 system	or	 are	 actively	 employed	 in
the	 current	 processes.	 As	 a	 result,	 this	 technique	 is	 not	 suited	 for	 the
development	of	new	processes.	During	system	development,	 field	observations
and	apprenticing	are	especially	well	suited	as	elicitation	techniques.

Field	observation

Field	 observation:	 The	 requirements	 engineer	 is	 on	 location	 with	 the
specialist	 or	 the	 users	 of	 the	 system	 and	 observes	 and	 documents	 the
processes	 and	 operational	 procedures	 that	 they	 carry	 out.	 Using	 these
observations,	 she	 formulates	 the	 requirements.	 Often,	 this	 can	 be	 further
aided	 by	 audio	 and	 video	 recordings.	 This	 technique	 is	 well	 suited	 for
operational	procedures	that	are	difficult	to	express	verbally,	but	it	can	only
be	applied	if	the	procedures	are	visible	physically.

Apprenticing

With	 apprenticing,	 the	 requirements	 engineer	 must	 actively	 learn	 and
perform	 the	 procedures	 of	 the	 stakeholders.	 Just	 like	 an	 apprentice,	 the
requirements	 engineer	 is	 encouraged	 to	 question	 unclear	 and	 complex
operational	procedures	so	that	she	may	gather	domain	experience.	Thereby,
she	can	experience	requirements	that	the	stakeholders	take	for	granted	and
therefore	cannot	elucidate.	Another	advantage	is	that	the	typical	balance	of
power	 between	 the	 requirements	 engineer	 and	 the	 respective	 specialist	 is

reversed	because	 the	stakeholder	now	adopts	 the	 role	of	 the	“master”	 that
has	the	knowledge	the	apprentice	is	yet	lacking.

3.3.6	Support	Techniques

Support	 techniques	serve	as	an	addition	 to	 the	elicitation	 techniques	and	 try	 to
balance	out	the	weaknesses	and	pitfalls	of	the	chosen	elicitation	technique.

Mind	mapping

In	mind	mapping,	a	graphical	representation	of	the	refined	relationships	and
interdependencies	between	terms	is	created.	Mind	mapping	is	often	used	as
a	supporting	technique	for	brainstorming	or	brainstorming	paradox.

Workshops

During	 a	 joint	 meeting,	 the	 requirements	 engineer	 and	 the	 stakeholders
elaborate	the	goals	(or	details	of	a	certain	functionality)	of	the	system.	For
example,	 the	necessary	user	 interfaces	of	 the	system	can	be	designed	 in	a
workshop	[Gottesdiener	2002].

CRC	cards

With	 the	 CRC	 technique	 (CRC	 stands	 for	 Class	 Responsibility
Collaboration),	 context	 aspects	 and	 their	 respective	 attributes	 and
properties	 are	 denoted	 on	 index	 cards.	 Requirements	 are	 then	 formulated
using	these	cards.

Audio	and	video	recordings

Audio	and	video	recordings	are	very	well	suited	to	elicit	requirements	when
stakeholders	 are	 not	 always	 available,	 when	 budget	 is	 tight,	 or	 when	 the
system	 is	 highly	 critical.	 Especially	 during	 field	 observations,	 audio	 and
video	 recordings	 can	help	 capture	 fast-paced	processes.	The	disadvantage
of	 this	 technique	 is	 that	 stakeholders	 often	 feel	 supervised	when	 they	 are
being	 recorded	 and	 as	 a	 result	 might	 deliver	 biased	 statements	 or,	 in
extreme	cases,	might	even	refuse	to	cooperate.

Modeling	action	sequences

Use	case	modeling:	Use	cases	document	the	external	view	of	the	system	to
be	developed.	A	use	 case	has	 a	 trigger	 event,	which	 triggers	 the	use	 case
and	 an	 expected	 result,	 or	 outcome	 of	 the	 use	 case.	 Every	 use	 case	 is	 a
functionality	 that	 must	 be	 supported	 by	 the	 system	 to	 be	 developed	 (see
section	6.3).

Prototypes	for	illustration

Prototypes	are	well	suited	to	question	established	requirements	and	to	elicit
requirements	 in	 situations	 where	 stakeholders	 have	 only	 a	 vague
understanding	of	what	is	to	be	developed.	Potential	consequences	of	new	or
changed	requirements	can	be	identified	easier.	For	example,	user	interface
prototypes	 are	 frequently	 used	 in	 practice	 to	 find	 additional	 functional
requirements.

3.4	Summary

Requirements	 elicitation	 is	 a	 core	 activity	 in	 requirements	 engineering.	 Aside
from	 documents	 and	 legacy	 systems,	 stakeholders	 are	 the	 main	 sources	 for
requirements.	 It	 is	 important	 to	 initially	 agree	 upon	 mutual	 rights	 and
responsibilities	 of	 the	 stakeholders	 and	 the	 requirements	 engineer	 in	 order	 to
facilitate	 communication	 and	 cooperation	 and	 to	 successfully	 integrate	 the
stakeholders	 into	 the	 elicitation	 process.	 The	 choice	 of	 the	 right	 elicitation
technique	for	the	respective	project	is	made	by	the	requirements	engineer	based
on	the	given	cultural,	organizational,	and	domain-specific	constraints.

4	Documenting	Requirements

In	 requirements	 engineering,	 information	 that	 has	 been	 established	 or	 worked
out	during	different	activities	must	be	documented.	Among	this	information	are,
for	 example,	 protocols	 of	 interviews	 and	 reports	 of	 validation	 or	 agreement
activities,	but	also	change	requests.	The	main	and	most	important	documentation
task	 in	 requirements	 engineering,	 though,	 is	 to	 document	 the	 requirements	 for
the	system	in	a	suitable	manner.

4.1	Document	Design

A	 documentation	 technique	 is	 any	 kind	 of	 more	 or	 less	 formal	 depiction	 that
eases	 communication	 between	 stakeholders	 and	 increases	 the	 quality	 of	 the
documented	 requirements.	 In	 principle,	 any	 kind	 of	 documentation	 technique
can	 be	 used	 to	 document	 the	 requirements,	 let	 it	 be	 natural	 language-based
documentation	by	means	of	prose,	more	structured	natural	language-based	text,
or	more	formal	techniques	such	as	state	diagrams.

Definition	4-1:	Requirements	Document	/	Requirements	Specification
A	requirements	specification	is	a	systematically	represented	collection	of	requirements,	typically	for	a
system	or	component,	that	satisfies	given	criteria.

Reasons	for	the	documentation

During	the	life	cycle	of	a	requirements	document,	many	people	are	trusted	with
the	 documentation.	 During	 communication,	 the	 documentation	 has	 a	 goal-
oriented	 and	 supporting	 role.	 The	main	 reasons	 for	 documenting	 requirements
are	as	follows:

Central	role	of	requirements

Requirements	are	the	basis	of	the	system	development.	Requirements	of	any
kind	influence	the	analysis,	design,	implementation,	and	test	phases	directly
and	indirectly.	The	quality	of	a	requirement	or	of	a	requirements	document
has	 a	 strong	 impact	 on	 the	 progress	 of	 the	 project	 and	 therefore	 on	 its
success.

Legal	relevance

Requirements	have	a	legal	relevance.	Requirements	are	legally	binding	for
the	 contractor	 and	 the	 client,	 and	 the	 client	 can	 sue	 for	 their	 fulfillment.
Documenting	the	requirements	can	help	to	quickly	overcome	legal	conflicts
between	two	or	more	parties.

Complexity

Requirements	 documents	 are	 complex.	 Systems	 that	 possess	 thousands	 of
requirements	 that	 in	 turn	 have	 complex	 interdependencies	 on	 multiple
layers	 are	 not	 unheard	 of	 in	 practice.	 Without	 suitable	 documentation,
keeping	on	top	of	things	can	become	very	difficult	for	anyone	involved.

Accessibility

Requirements	must	 be	accessible	 to	all	 involved	parties.	 Projects	 undergo
certain	“development”	as	time	goes	by—with	regard	to	the	subject	as	well
as	 the	 staff.	When	 requirements	can	be	permanently	accessed,	uncertainty
and	obscurities	can	be	avoided	and	staff	that	has	recently	joined	the	project
can	quickly	get	up	to	speed.

Another	 argument	 for	 a	 good	 documentation,	 supportive	 of	 the	 project,	 is	 that
employees	 almost	 never	 share	 the	 same	 understanding	 of	 a	 subject	 matter.
Therefore,	 requirements	 should	 be	 documented	 in	 a	 way	 that	 they	 meet	 the
quality	demands	of	all	involved.

4.2	Types	of	Documentation

Requirements	for	a	system	can	be	documented	in	three	different	perspectives.	In
practice,	natural	language	as	well	as	conceptual	models	are	used	to	this	end,	or
oftentimes,	an	advantageous	combination	of	both	is	employed.

4.2.1	The	Three	Perspectives	of	Requirements

Requirements	 for	 a	 system	 can	 be	 documented	 in	 three	 different	 perspectives
onto	the	system	to	be	developed:

Data	perspective

Data	perspective:	In	the	data	perspective,	a	static-structural	perspective	on
the	 requirements	 of	 the	 system	 is	 adopted.	 For	 example,	 the	 structure	 of
input	 and	 output	 data	 as	 well	 as	 static-structural	 aspects	 of	 usage	 and
dependency	 relations	 of	 the	 system	 and	 the	 system	 context	 can	 be
documented	(e.g.,	the	services	of	an	external	system).

Functional	perspective

Functional	 perspective:	 The	 functional	 perspective	 documents	 which
information	(data)	is	received	from	the	system	context	and	manipulated	by
the	system	or	one	of	 its	functions.	This	perspective	also	documents	which
data	 flows	 back	 into	 the	 system	 context.	 The	 order	 in	 which	 functions
processing	the	input	data	are	executed	is	also	documented.

Behavioral	perspective:

Behavioral	 perspective:	 In	 the	 behavioral	 perspective,	 information	 about
the	system	and	how	it	is	embedded	into	the	system	context	is	documented
in	a	state-oriented	manner.	This	is	done	by	documenting	the	reactions	of	the
system	 upon	 events	 in	 the	 system	 context,	 the	 conditions	 that	 warrant	 a
state	transition,	and	the	effects	that	the	system	shall	have	on	its	environment
(e.g.,	 effects	 of	 the	 system	 analyzed	 that	 represent	 events	 in	 the	 system
context	of	a	different	system).

4.2.2	Requirements	Documentation	using	Natural	Language

Advantages	of	using	natural	language

Natural	 language,	 particularly	 prose,	 is	 the	 most	 commonly	 applied
documentation	 form	 for	 requirements	 in	 practice.	 In	 contrast	 to	 other
documentation	 forms,	 prose	 has	 a	 striking	 advantage:	 No	 stakeholder	 has	 to
learn	 a	 new	 notation.	 In	 addition,	 language	 can	 be	 used	 for	 miscellaneous
purposes—the	 requirements	 engineer	 can	 use	 natural	 language	 to	 express	 any
kind	of	requirement.

Disadvantages	of	using	natural	language

Natural-language-based	 documentation	 is	 well	 suited	 to	 document
requirements	 in	 any	 of	 the	 three	 perspectives.	 However,	 natural	 language	 can
allow	 requirements	 to	 be	 ambiguous,	 and	 requirements	 of	 different	 types	 and
perspectives	 are	 in	 danger	 of	 being	 unintentionally	 mixed	 up	 during
documentation.	 In	 that	case,	 it	 is	difficult	 to	 isolate	 information	pertaining	 to	a
certain	perspective	amidst	all	of	the	requirements	in	natural	language.

4.2.3	Requirements	Documentation	using	Conceptual	Models

In	contrast	to	natural	language,	the	different	types	of	conceptual	models	cannot
be	 used	 universally.	 When	 documenting	 requirements	 by	 means	 of	 models,
special	 modeling	 languages	 must	 be	 used	 that	 pertain	 to	 the	 appropriate
perspective.	Assuming	the	modeling	language	selected	for	a	documentation	task
is	 applied	 correctly,	 its	 use	 constructively	 guarantees	 that	 the	 models	 created
depict	 information	 pertaining	 to	 the	 respective	 perspective	 only.	 The	 models
depict	 the	 documented	 requirements	much	more	 compactly	 and	 they	 therefore
are	easier	for	a	trained	reader	to	understand	than	is	natural	language.	In	addition,
conceptual	models	offer	a	decreased	degree	of	ambiguity	(i.e.,	fewer	ways	to	be
interpreted)	 than	 natural	 language	 due	 to	 their	 higher	 degree	 of	 formality.
However,	using	conceptual	modeling	languages	for	requirements	documentation
requires	 specific	 knowledge	 of	 modeling.	 The	 following	 list	 includes	 short
descriptions	of	the	most	important	diagrams	discussed	in	chapter	6.

Overview	of	system	functions

Use	case	diagram:	A	use	case	diagram	allows	you	to	gain	a	quick	overview

of	 the	 functionalities	 of	 the	 specified	 system.	A	use	 case	 describes	which
functions	 are	 offered	 to	 the	 user	 by	 the	 system	 and	 how	 these	 functions
relate	 to	 other	 external	 interacting	 entities.	 However,	 use	 cases	 do	 not
describe	 the	 responsibilities	 that	 the	 functions	 have	 in	 detail	 (see	 section
6.3).

Structural	data	modeling	and	structuring	of	terms

Class	 diagram:	 Among	 other	 things,	 class	 diagrams	 are	 used	 in
requirements	 engineering	 to	 document	 requirements	 with	 regard	 to	 the
static	structure	of	data,	to	document	static-structural	dependencies	between
the	system	and	the	system	context,	or	to	document	complex	domain	terms
in	a	structured	manner	(see	section	6.5.2).

Sequence	modeling

Activity	diagram:	Using	activity	diagrams,	business	processes,	or	sequence-
oriented	 dependencies	 of	 the	 system	 in	 regard	 to	 processes	 within	 the
system	context	can	be	documented.	Activity	diagrams	are	also	well	suited
to	 model	 the	 sequential	 character	 of	 use	 cases	 or	 to	 model	 a	 detailed
specification	 of	 the	 interaction	 of	 functions	 that	 process	 data	 (see	 section
6.6.3).

Event-driven	behavior

State	 diagram:	 State	 diagrams	 are	 used	 in	 requirements	 engineering	 to
document	 event-driven	 behavior	 of	 a	 system.	 The	 focus	 of	 this	 type	 of
model	 is	 on	 the	 individual	 states	 the	 system	 can	 be	 in,	 events	 and	 their
respective	conditions	that	trigger	a	state	transition,	and	effects	of	the	system
in	its	environment.

4.2.4	Hybrid	Requirements	Documents

Combined	use	of	documentation	types

Requirements	documents	first	and	foremost	contain	requirements.	In	addition,	in
many	situations	it	is	sensible	to	document	decisions,	important	explanations,	and

other	 relevant	 information	 as	 well.	 Depending	 on	 the	 target	 audience	 of	 the
document,	 the	 perspective	 on	 the	 system,	 and	 the	 documented	 knowledge,
suitable	 documentation	 types	 are	 selected.	 Typically,	 documents	 contain	 a
combination	 of	 natural	 language	 and	 conceptual	 models.	 The	 combination
allows	the	disadvantages	of	both	documentation	types	to	be	decreased	by	means
of	the	strengths	of	the	other	documentation	type,	and	combining	documentation
types	exploits	the	advantages	of	both.	For	 instance,	models	can	be	amended	or
complemented	by	natural	language	comments	and	natural	language	requirements
and	natural	 language	glossaries	can	be	summarized	and	their	dependencies	can
be	depicted	clearly	by	making	use	of	models.

4.3	Document	Structures

Influence	of	the	requirements	on	satisfaction

Requirements	 documents	 contain	 a	 magnitude	 of	 different	 information.	 These
must	be	well	structured	for	the	reader.	In	order	to	do	that,	one	can	make	use	of
standardized	 document	 structures	 or	 individually	 define	 a	 custom	 document
structure.

4.3.1	Standardized	Document	Structures

Adaptation	of	existing	standard	outlines

Standard	 outlines	 offer	 a	 predefined	 structure,	 i.e.,	 predefined	 stereotypes
according	to	which	the	information	can	be	classified.	By	using	standard	outlines,
a	 rough	 structure	 along	 with	 a	 short	 description	 of	 the	 content	 of	 the	 main
sections	is	predetermined.	Using	standard	outlines	has	the	following	advantages:

Standard	outlines	simplify	incorporating	new	staff	members.
Standard	outlines	allow	for	quickly	finding	desired	contents.
Standard	outlines	allow	for	selective	reading	and	validation	of	requirements
documents.
Standard	 outlines	 allow	 for	 automatic	 verification	 of	 requirements
documents	(e.g.,	with	regard	to	completeness).
Standard	outlines	allow	for	simplified	reuse	of	the	contents	of	requirements

documents.

It	must	be	noted	that	these	structures	must	be	tailored	with	regard	to	the	specific
project	properties	to	meet	the	respective	constraints.	In	the	following	paragraphs,
three	of	the	most	widely	used	standardized	document	structures	are	introduced.

Rational	Unified	Process

The	 Rational	 Unified	 Process	 (RUP)	 [Kruchten	 2001]is	 usually	 used	 for
software	 systems	 that	 are	 developed	using	object-oriented	methods.	The	 client
creates	 a	 business	 model	 that	 contains	 different	 artifacts	 from	 the	 business
environment	 (e.g.,	 business	 rules,	 business	 use	 cases,	 business	 goals),	 which
serve	as	the	basis	for	requirements	of	the	system	over	the	course	of	development.
The	 contractor	 uses	 the	 structures	 of	 the	 software	 requirements	 specification
(SRS)	to	document	all	software	requirements.	These	structures	are	closely	related
to	the	ISO/IEC/IEEE	standard	29148:2011,	as	described	next.

ISO/IEC/IEEE	standard	29148:2011

The	 ISO/IEC/IEEE	 standard	 29148:2011	 [ISO/IEC/IEEE	 29148:2011]
contains	 an	 outline	 designed	 for	 the	 documentation	 of	 software	 requirements
(software	 requirements	 specification).	The	 standard	 structure	 suggests	 dividing
the	requirements	document	into	five	parts	with	regard	to	their	subject	matter:

A	 chapter	 with	 introductory	 information	 (e.g.,	 system	 goal,	 system
bounding)	and	a	general	description	of	the	software	(e.g.,	perspective	of	the
system,	properties	of	future	users)
A	 chapter	 with	 a	 listing	 of	 all	 documents	 that	 are	 referenced	 in	 the
specification
A	 chapter	 for	 specific	 requirements	 (e.g.,	 functional	 requirements,
performance,	interfaces)
A	chapter	with	all	planned	measures	for	verification
Appendices	(e.g.,	information	about	assumptions	that	were	made,	identified
dependencies)

V-Model

The	V-Model	 [V-Modell	 2004]	 of	 the	German	Federal	Ministry	 of	 the	 Interior

(BMI)	defines	different	structures,	depending	on	the	creator	of	the	requirements
document:

The	Customer	Requirements	 Specification,	 known	 in	 the	German	 original
as	Lastenheft,	is	created	by	the	customer	and	describes	all	of	the	demands
to	 the	 contractor	 regarding	 the	 subject	 of	 the	 contract,	 i.e.,	 deliveries	 and
services.	 In	 addition,	 in	 many	 cases,	 demands	 of	 the	 users,	 including	 all
constraints	 to	 the	 system	 and	 the	 development	 process,	 are	 documented.
Therefore,	the	Customer	Requirements	Specification	usually	describes	what
is	made	for	what.
The	System	Requirements	 Specification,	 known	 in	 the	German	original	 as
Pflichtenheft,	 is	 based	 on	 the	 Customer	 Requirements	 Specification	 and
contains	the	implementation	suggestions	that	the	contractor	has	elaborated.
Therefore,	 the	 System	 Requirements	 Specification	 is	 a	 refinement	 of	 the
requirements	and	constraints	of	the	Customer	Requirements	Specification.

4.3.2	Customized	Standard	Contents

The	minimum	content

As	described	in	section	4.3.1,	standardized	document	structures	are	adapted	with
regard	 to	 the	 specific	 project	 conditions.	 The	 following	 issues	 should	 be
addressed	by	any	chosen	structure.

Introduction

The	 introduction	 contains	 information	 about	 the	 entire	 document.	 This
information	allows	gaining	a	quick	overview	of	the	system.

Purpose:	This	section	discusses	why	the	document	was	created	and	who	the
target	audience	for	the	requirements	document	is.
System	 coverage:	 This	 part	 consists	 of	 the	 system	 to	 be	 developed.	 It
indicates	 system	 name	 and	 the	 principle	 goals	 and	 advantages	 that	 arise
from	introducing	the	system.
Stakeholder:	This	section	contains	a	 list	of	stakeholders	and	their	 relevant
information	(see	section	3.1.1).

Definitions,	Acronyms,	and	Abbreviations:1	 In	 this	section,	 the	 terms	used
in	 the	 document	 are	 defined	 so	 that	 they	 can	 be	 used	 consistently
throughout	the	document.
References:2	 All	 documents	 that	 are	 referenced	 by	 the	 requirements
document	are	listed	herein.
Overview:	At	the	end	of	the	introductory	chapter,	the	content	and	structure
of	the	following	sections	of	the	requirements	document	should	be	explained
briefly.

General	Overview

In	 this	 section,	 additional	 information	 is	 documented	 that	 increases	 the
understandability	 of	 the	 requirements.	 In	 contrast	 to	 the	 introduction,	 this	 is
merely	 operational	 information	 that	 does	 not	 pertain	 to	 administration,
management,	or	organizational	aspects	of	the	requirements	document.

System	environment:	The	embedding	of	the	system	into	the	environment	is
of	 key	 concern	 in	 this	 paragraph.	 The	 results	 of	 your	 definition	 of	 the
system	boundary	and	context	boundary	can	be	found	herein.
Architecture	 description:	 In	 this	 section,	 the	 operational	 interfaces	 of	 the
system	 (e.g.,	 user	 interfaces,	 hardware	 and	 software	 interfaces,	 and
communication	 interfaces)	 are	 documented.	 In	 addition,	 further
information,	e.g.,	regarding	storage	limitations,	is	also	discussed.
System	 functionality:	 This	 section	 contains	 the	 coarse	 functionalities	 and
tasks	of	the	system.	This	can	be	documented,	for	example,	using	a	use	case
diagram.
User	and	 target	audience:	The	different	users	of	 the	system	that	make	up
the	target	audience	are	listed.
Constraints:	 In	 this	section,	all	conditions	ought	 to	be	 listed	 that	have	not
been	documented	thus	far	and	might	hinder	the	requirements	engineering.
Assumptions:	 Decisions,	 such	 as	 not	 implementing	 certain	 aspects	 of	 the
system	 due	 to	 budgeting	 reasons,	 or	 other	 general	 assumptions	 about	 the
system	context	that	the	requirements	are	based	upon	are	documented	here.

Requirements

This	part	contains	functional	requirements	as	well	as	quality	requirements.

Appendices

In	 the	 appendices,	 additional	 information	 that	 completes	 the	 document	 can	 be
documented.	 For	 example,	 the	 appendices	 can	 include	 additional	 documents
regarding	 the	 user	 characteristics,	 standards,	 conventions,	 or	 background
information	regarding	the	requirements	document.

Index

The	index	typically	contains	a	table	of	contents	(i.e.,	a	structure	of	the	chapters)
and	an	index	directory.	In	highly	dynamic	requirements	documents,	this	may	be
a	highly	critical	section	that	must	be	kept	up-to-date.

4.4	Using	Requirements	Documents

Requirements	documents	as	the	basis	for	development

Over	 the	 course	 of	 the	 project,	 requirements	 documents	 serve	 as	 the	 basis	 for
different	tasks:

Planning:	 Based	 on	 the	 requirements	 document,	 concrete	 work	 packages
and	milestones	for	the	implementation	of	the	system	can	be	defined.
Architectural	 design:	 The	 detailed	 documented	 requirements	 (along	 with
constraints)	serve	as	the	basis	for	the	design	of	the	system	architecture.
Implementation:	 Based	 on	 the	 architectural	 design,	 the	 system	 is
implemented	by	making	use	of	the	requirements.
Test:	 On	 the	 basis	 of	 requirements	 that	 have	 been	 documented	 in	 the
requirements	 document,	 test	 cases	 can	 be	 developed	 that	 can	 be	 used	 for
system	validation	later	on.
Change	 management:	 When	 requirements	 change,	 the	 requirements
document	can	serve	as	the	basis	to	analyze	the	extent	to	which	other	parts
of	the	system	are	influenced.	The	change	effort	can	thus	be	estimated.
System	usage	and	system	maintenance:	After	 the	system	is	developed,	 the
requirements	document	is	used	for	maintenance	and	support.	This	way,	the

requirements	 document	 can	 be	 used	 to	 analyze	 concrete	 defects	 and
shortcomings	that	surface	during	system	use.	For	example,	one	can	deduct
if	a	defect	is	a	result	of	using	the	system	incorrectly,	a	result	of	an	error	in
requirements,	or	a	result	of	an	error	in	implementation.
Contract	management:	The	requirements	document	is	the	prime	subject	of
a	contract	between	a	client	and	a	contractor	in	many	cases.

4.5	Quality	Criteria	for	Requirements	Documents

To	 become	 a	 basis	 for	 the	 subsequent	 processes,	 the	 requirements	 document
must	 meet	 certain	 quality	 criteria.	 According	 to	 the	 ISO/IEC/IEEE	 standard
29148:2011	 [ISO/IEC/IEEE	 29148:2011],	 a	 requirements	 document	 shall	 be
complete	 and	 consistent.	 Moreover,	 a	 requirements	 document	 shall	 support
readability	 by	 offering	 a	 clear	 structure,	 reasonable	 scope,	 and	 traceability.
Overall,	a	requirements	document	shall	fulfil	the	following	quality	criteria:

Unambiguity	and	consistency
Clear	structure
Modifiability	and	extendibility
Completeness
Traceability

4.5.1	Unambiguity	and	Consistency

Quality	of	individual	requirements	is	a	prerequisite.

Requirements	 documents	 can	 be	 consistent	 and	 unambiguous	 only	 when	 the
individual	requirements	are	consistent	and	unambiguous.	In	addition,	it	must	be
guaranteed	 that	 individual	 requirements	 do	 not	 contradict	 one	 another.	 To
achieve	 this,	 it	 is	 advisable	 to	make	use	of	 conceptual	models	 (see	 chapter	6).
Another	 aspect	 of	 unambiguity	 pertains	 to	 the	 unique	 identification	 of	 a
requirements	 document	 or	 a	 requirement	 among	 the	 set	 of	 all	 requirements
documents	or	requirements	in	a	development	project	(see	section	8.5).

4.5.2	Clear	Structure

Allows	for	selective	reading

In	 order	 to	 guarantee	 that	 the	 requirements	 document	 is	 readable	 by	 any
stakeholder,	 it	 should	 be	 appropriately	 comprehensive	 and	 clearly	 structured.
Unfortunately,	 no	 clear-cut	 suggestions	 can	 be	made	 regarding	 the	 appropriate
comprehensiveness	 of	 a	 requirements	 document.	 A	 very	 comprehensive
requirements	document	with	a	good	structure	can	be	just	as	appropriate	as	a	less
comprehensive	document	because	a	clear	structure	will	allow	the	reader	to	skip
parts	 that	 are	 not	 relevant	 to	 him.	 An	 unstructured	 or	 badly	 structured
requirements	document	of	the	same	high	level	of	comprehensiveness	would	not
be	appropriate	because	the	document	must	be	read	in	 its	entirety	 in	order	for	a
stakeholder	 to	be	able	 to	 identify	parts	 that	are	relevant	 to	her.	A	good	starting
point	is	the	standard	structures	described	in	section	4.3.1.

4.5.3	Modifiability	and	Extendibility

Content	and	structure	should	support	changeability.

Requirements	documents	must	be	easy	to	extend.	There	are	always	requirements
that	are	changed,	altered,	added,	or	removed	as	a	project	progresses.	As	a	result,
the	 structure	of	 requirements	documents	 should	be	easy	 to	modify	and	extend.
The	 requirements	 documents	 of	 a	 project	 should	 be	 subject	 to	 the	 project’s
version	control	management.

4.5.4	Completeness

Two	types	of	completeness	in	requirements	documents

Requirements	documents	must	be	complete,	 i.e.,	 they	must	contain	all	 relevant
requirements	 (and	required	additional	 information),	and	each	requirement	must
be	documented	completely.3	All	possible	inputs,	influential	factors,	and	required
reactions	of	the	system	must	be	described	for	each	desired	system	function.	This
comprises	 describing	 error	 and	 exception	 cases	 in	 particular.	 Also,	 quality
requirements,	 such	 as	 requirements	 pertaining	 to	 reaction	 times	 or	 availability

and	usability	of	the	system,	must	be	noted.

Evidence,	reference,	and	sources	are	formal	necessities.

Formal	factors	also	contribute	to	completeness.	Graphs,	diagrams,	and	tables
should	 be	 appropriately	 labeled.	 Another	 important	 aspect	 is	 that	 consistent
reference	and	index	directories	must	exist.	Also,	definitions	and	norm	reference
that	denote	specific	terms	must	be	included	in	any	requirements	document.	The
comprehensiveness	 of	 a	 requirements	 document	 is	 a	 challenge	 during
requirements	engineering.	Often,	a	compromise	must	be	found	between	the	time
resources	available	and	the	completeness	of	the	requirements	documents.

4.5.5	Traceability

Relationship	to	other	development	documents

An	 important	 quality	 criterion	 is	 traceability	 of	 relationships	 between
requirements	documents	and	other	documents	(e.g.,	business	process	model,	test
plans,	 or	 design	plans).	These	 documents	 could	 have	been	 created	 in	 previous
development	 phases,	 in	 subsequent	 development	 phases,	 or	 concurrently	 with
the	 requirements	 documents.	Among	other	 things,	 traceability	 supports	 change
management	(see	section	8.4).

4.6	Quality	Criteria	for	Requirements

Quality	criteria	for	single	document	requirements

Each	documented	requirement	should	fulfil	the	following	quality	criteria:

Agreed:	A	requirement	 is	agreed	upon	 if	 it	 is	correct	and	necessary	 in	 the
opinion	of	all	stakeholders.
Unambiguous:	 [ISO/IEC/IEEE	 29148:2011]	 A	 requirement	 that	 is
unambiguously	documented	can	be	understood	in	only	one	way.	It	must	not
be	possible	to	interpret	the	requirement	in	a	different	way.	All	readers	of	the
requirement	must	arrive	at	the	same	understanding	of	the	requirement.
Necessary:	 [ISO/IEC/IEEE	 29148:2011]	A	 documented	 requirement	must

represent	the	facts	and	conditions	of	the	system	context	in	a	way	that	it	is
valid	with	regard	to	the	actualities	of	the	system	context.	These	actualities
may	be	the	different	stakeholders’	ideas,	relevant	standards,	or	interfaces	to
external	systems.
Consistent:	 [ISO/IEC/IEEE	29148:2011]	Requirements	must	be	 consistent
with	 regard	 to	 all	 other	 requirements,	 i.e.,	 the	 requirements	 must	 not
contradict	one	another,	regardless	of	their	level	of	detail	or	documentation
type.	In	addition,	a	requirement	must	be	formulated	in	a	way	that	allows	for
consistency	with	itself,	i.e.,	the	requirement	may	not	contradict	itself.
Verifiable:	 [ISO/IEC/IEEE	 29148:2011]	A	 requirement	must	 be	 described
in	a	way	that	allows	for	verification.	That	means	that	tests	or	measurements
can	be	carried	out	that	provide	evidence	of	the	functionality	demanded	by
the	requirement.
Feasible:	 [ISO/IEC/IEEE	 29148:2011]	 It	 must	 be	 possible	 to	 implement
each	 requirement	 given	 the	 organizational,	 legal,	 technical,	 or	 financial
constraints.	This	means	that	a	member	of	the	development	team	ought	to	be
involved	 in	 rating	 the	 goals	 and	 requirements	 so	 that	 he	 can	 show	 the
technical	 limits	 of	 the	 implementation	 of	 a	 particular	 requirement.	 In
addition,	 the	 costs	 for	 the	 implementation	 must	 be	 incorporated	 into	 the
rating.	Occasionally,	stakeholders	withdraw	a	requirement	if	the	costs	for	its
realization	become	apparent.
Traceable:	 [ISO/IEC/IEEE	 29148:2011]	 A	 requirement	 is	 traceable	 if	 its
origin	as	well	as	 its	 realization	and	 its	 relation	 to	other	documents	can	be
retraced.	 This	 can	 be	 done	 by	 means	 of	 unique	 requirement	 identifiers.
Using	 these	 unique	 identifiers,	 requirements	 that	 are	 derived	 from	 other
requirements	on	a	different	level	of	the	specification	can	be	connected.	For
example,	a	system	goal	can	be	traced	through	all	levels	of	abstraction,	from
design	to	implementation	and	test.	Details	can	be	found	in	section	8.4.
Complete:	 [ISO/IEC/IEEE	29148:2011]	Each	 individual	 requirement	must
completely	describe	the	functionality	it	specifies.	Requirements	that	are	yet
incomplete	must	be	 specially	marked,	 for	example	by	 inserting	“tbd”	 (“to
be	determined”)	into	the	respective	text	field	or	by	setting	a	corresponding
status.	These	markings	can	then	be	systematically	searched	for	and	missing
information	can	be	amended	accordingly.
Understandable:	 Requirements	 must	 be	 comprehensible	 to	 each
stakeholder.	Therefore,	the	type	of	requirements	documentation	(see	section
4.2)	 can	 vary	 significantly,	 depending	 on	 the	 development	 phase	 (and
therefore,	depending	on	the	involved	staff).	In	requirements	engineering,	it

is	important	to	strictly	define	the	terms	used.

Fundamental	principles	of	understandability

Along	with	quality	criteria	for	requirements,	there	are	two	fundamental	rules	that
enhance	the	readability	of	requirements:

Short	 sentences	 and	 short	 paragraphs:	 As	 human	 short-term	 memory	 is
very	limited,	circumstances	that	belong	together	should	be	described	in	no
more	than	seven	sentences.
Formulate	 only	 one	 requirement	 per	 sentence:	 Formulate	 requirements
using	 active	 voice	 and	 use	 only	 one	 process	 verb.	 Long,	 complicated
interlaced	sentences	must	be	avoided.

4.7	Glossary

A	frequent	cause	for	conflicts	in	requirements	engineering	is	that	the	people	that
are	involved	in	the	development	process	have	different	interpretations	of	terms.
In	order	to	avoid	these	conflicts,	it	is	necessary	that	everyone	who	is	involved	in
the	development	process	shares	the	same	understanding	of	the	terminology	used.
Therefore,	all	relevant	terms	must	be	defined	in	a	common	glossary.	A	glossary
is	a	collection	of	term	definitions	and	contains	the	following	elements:

Context-specific	technical	terms
Abbreviations	and	acronyms
Everyday	concepts	that	have	a	special	meaning	in	the	given	context
Synonyms,	i.e.,	different	terms	with	the	same	meaning
Homonyms,	i.e.,	identical	terms	with	different	meanings

Consistent	definitions

By	 defining	 the	 meaning	 of	 terms,	 you	 can	 increase	 the	 understandability	 of
requirements	 considerably.	 Misunderstandings	 and	 different	 interpretations	 of
terms	that	might	lead	to	conflicts	can	be	avoided	from	the	beginning.

Reuse	of	glossary	entries

Often,	in	different	projects,	terms	are	used	that	are	similar	to	one	another	or
in	 fact	 identical.	 This	 may	 be	 the	 case,	 for	 example,	 when	 one	 system	 is
developed	 for	 different	 customers	 but	 within	 the	 same	 domain.	 In	 this	 case,
already	 existing	 glossary	 entries	 should	 be	 reused.	 It	may	 even	 be	 feasible	 to
define	such	terms	in	a	universal,	 inter-project	glossary.	The	additional	effort	of
creating	 such	 a	 glossary	 will	 pay	 off	 in	 future	 projects.	 For	 certain	 domains,
collections	of	 term	definitions	 already	 exist	 and	 are	 publicly	 accessible.	These
may	 serve	 as	 the	 foundation	 for	 the	 definition	 of	 specific	 glossaries.	 For
example,	 in	 [IEEE	 610.12-1990],	 typical	 terms	 of	 software	 engineering	 are
defined.

Rules	for	Using	a	Glossary

Basic	rules	for	using	a	glossary

Since	creating	a	glossary	is	absolutely	mandatory,	the	following	must	be	noted:

The	glossary	must	be	centrally	managed:	At	any	time,	there	must	be	only
one	valid	glossary,	which	must	also	be	centrally	accessible.	There	must	not
be	multiple	valid	glossaries.
Responsibility	must	be	assigned:	One	particular	individual	must	be	assigned
with	the	task	of	maintaining	the	glossary	and	ensuring	consistency	and	up-
to-dateness.	 The	 necessary	 resources	 to	 accomplish	 this	 task	 must	 be
included	in	the	project	plan.
The	glossary	must	be	maintained	over	the	course	of	the	project:	In	order	to
ensure	that	the	glossary	is	consistent	and	up-to-date,	it	must	be	maintained
over	 the	 course	 of	 the	 entire	 project	 by	 the	 person	 that	was	 assigned	 this
responsibility.
The	glossary	must	be	commonly	accessible:	The	 term	definitions	must	be
available	 for	 all	 involved	 personnel.	 This	 is	 the	 only	 way	 a	 common
understanding	of	the	terms	can	be	ensured.
Using	 the	 glossary	 must	 be	 obligatory:	 All	 involved	 personnel	 must	 be
obliged	to	exclusively	use	the	terms	and	term	definitions	as	they	have	been
defined	in	the	glossary.
The	glossary	should	contain	the	sources	of	the	terms:	In	order	to	be	able	to
resolve	questions	and	problems	at	any	time	during	the	course	of	the	project,
it	must	be	possible	to	determine	the	source	of	a	term.

The	 stakeholders	 should	 agree	 upon	 the	 glossary:	 Only	 stakeholders	 can
reliably	 validate	 the	 operational	 definitions	 for	 their	 respective	 project
context.	 Each	 definition	 should	 be	 validated	 by	 the	 stakeholders	 or	 their
representatives.	 In	addition,	 the	 individual	 term	definitions	 in	 the	glossary
should	 be	 explicitly	 approved.	 This	 approval	 signals	 that	 the	 respective
term	is	correct	and	its	use	is	obligatory.
The	entries	in	the	glossary	should	have	a	consistent	structure:	All	entries	in
the	 glossary	 must	 be	 structured	 in	 the	 same	 way.	 In	 order	 to	 support	 a
consistent	 documentation,	 it	 is	 advisable	 to	 use	 a	 template	 for	 glossary
definitions.	 In	 addition	 to	 the	 definition	 and	 the	 meaning	 of	 a	 term,	 the
template	should	specify	possible	synonyms	and	homonyms.

To	 reduce	 the	effort	of	 aligning	 terms	with	one	another,	 it	 is	 advisable	 to	 start
with	the	creation	of	the	glossary	early	on	in	the	project.

4.8	Summary

The	 documentation	 of	 requirements	 plays	 a	 central	 role	 in	 requirements
engineering.	As	the	amount	of	requirements	is	often	vast,	it	is	very	important	to
clearly	structure	the	requirements	so	that	personnel	not	involved	with	the	project
also	understand	them.	Also,	looking	up	and	changing	requirements	is	simplified
and	 accelerated	 in	 this	 way.	 This	 makes	 meeting	 the	 quality	 criteria	 for
requirements	 documents	 much	 easier.	 Using	 customized	 documentation
structures	 has	 proven	 to	 be	 suitable	 for	 that	 purpose.	 These	 are	 completed	 by
inserting	project-specific	requirements	written	in	natural	language	in	conjunction
with	conceptual	requirements	models.

1.	This	section	can	also	be	treated	as	an	appendix	to	the	document.
2.	This	section	can	also	be	treated	as	an	appendix	to	the	document.
3.	Strictly	speaking,	this	statement	holds	true	only	for	the	requirements	document	of	the	next	system	release

(see	section	8.5.3).

5	Documenting	Requirements	in	Natural
Language

Elicited	requirements	for	the	system	to	be	developed	are	frequently	documented
using	 natural	 language.	 Natural	 language	 has	 the	 advantage	 that	 it	 (allegedly)
does	 not	 require	 preparation	 time	 in	 order	 to	 be	 read	 and	 understood	 by
stakeholders	 [Robertson	 and	Robertson	 2006].	 In	 addition,	 natural	 language	 is
universal	 in	 the	 sense	 that	 it	 can	 be	 used	 to	 describe	 any	 circumstances.
However,	 there	are	some	problems	associated	with	 the	use	of	natural	 language
for	requirements	documentation.

5.1	Effects	of	Natural	Language

Subjective	perception

As	natural	language	is	inherently	ambiguous	and	statements	in	natural	language
can	 often	 be	 interpreted	 in	 multiple	 ways,	 it	 is	 necessary	 to	 place	 special
emphasis	on	potential	ambiguities	 in	 such	statements	 to	 satisfy	 the	criterion	of
unambiguousness.	Requirements	 are	defined	and	 read	by	people	with	different
knowledge,	 different	 social	 backgrounds,	 and	 different	 experiences.	 The
diversity	among	the	people	involved	in	the	development	processes	may	lead	to
misunderstanding	 as	 humans	 interpret	 information	 differently	 (they	 form	 a	 so-
called	 “deep	 structure”	 in	 their	 mind)	 and	 thus	 construe	 it	 differently	 as	 well
(e.g.,	 as	 a	 requirement).	 During	 such	 a	 process	 (i.e.,	 perception	 and
representation	 of	 information),	 so-called	 “transformational	 effects”	 occur	 that
show	 different	 characteristics	with	 every	 human	 but	may	 occur	 in	 all	 humans
[Bandler	and	Grinder	1975,	Bandler	1994].

Figure	5-1	Transformational	effects	in	perception	and	representation	of	knowledge

Transformational	effects

The	fact	that	transformational	effects	adhere	to	certain	rules	can	be	exploited	by
the	requirements	engineer	to	elicit	 the	deep	structure	(i.e.,	what	the	author	of	a
requirement	really	meant)	from	its	surface	structure	(i.e.,	the	requirements).	The
following	list	includes	the	five	transformational	processes	that	are	most	relevant
for	requirements	engineering:

Nominalization
Nouns	without	reference	index
Universal	quantifiers
Incompletely	specified	conditions
Incompletely	specified	process	verbs

5.1.1	Nominalization

Reduction	of	processes

By	 means	 of	 nominalization,	 a	 (sometimes	 long-lasting)	 process	 is	 converted
into	 a	 (singular)	 event.	 All	 information	 necessary	 to	 accurately	 describe	 the
process	 is	 thereby	 lost.	 The	 process	 word	 transmit	 turns	 into	 the	 noun
transmission.	 Other	 typical	 examples	 of	 nominalization	 are	 the	 terms	 input,
booking,	and	acceptance.

Example	5-1:	Nominalization
“In	case	of	a	system	crash,	a	restart	of	the	system	shall	be	performed.”
The	terms	system	crash	and	restart	each	describe	a	process	that	ought	to	be	analyzed	more	precisely.

Define	processes	completely.

Per	se,	there	are	no	arguments	against	the	use	of	nominalized	terms	to	describe
complex	 processes.	 However,	 the	 process	 should	 be	 explicitly	 defined	 by	 the
term	used.	The	definition	of	a	nominalized	term	must	not	allow	for	any	leeway
in	 the	 interpretation	 of	 the	 processes	 and	 must	 precisely	 depict	 the	 process,
including	 any	 exceptions	 that	 may	 occur	 as	 well	 as	 all	 input	 and	 output
parameters.	 It	 is	 therefore	 not	 necessary	 to	 avoid	 nominalizations,	 but	 they
should	only	be	used	if	the	underlying	process	is	completely	defined.	During	the
linguistic	 analysis	 of	 a	 text,	 all	 nominalizations	 ought	 to	 be	 examined	 to
determine	whether	they	have	been	defined	in	sufficient	detail	in	another	part	of
the	requirements	document	and	whether	they	are	clear	for	all	stakeholders.	If	this
is	not	the	case,	another	requirement	or	a	glossary	entry	must	be	created.

5.1.2	Nouns	without	Reference	Index

Nouns	with	missing	reference

As	with	 process	 verbs,	 nouns	 are	 frequently	 incompletely	 specified.	 Linguists
call	 this	 a	 missing	 or	 inadequate	 index	 of	 reference.	 Examples	 of	 terms	 that
contain	incompletely	specified	nouns	are	the	user,	the	controller,	the	system,	the
message,	the	data,	or	the	function.

Example	5-2:	Nouns	without	reference	indices
The	data	shall	be	displayed	to	the	user	on	the	terminal.

The	 following	questions	arise:	What	data	exactly?	Which	user	exactly?	Which
terminal	 exactly?	 If	 this	 information	 is	 amended,	 the	 requirement	 might	 thus
read	as	follows:

Example	5-3:	Nouns	with	added	reference	indices
The	system	shall	display	the	billing	data	to	the	registered	user	on	the	terminal	she	is	logged	in	to.

5.1.3	Universal	Quantifiers

Specify	amounts	and	frequencies.

Universal	quantifiers	specify	amounts	or	frequencies.	They	group	a	set	of	objects
and	 make	 a	 statement	 about	 the	 behavior	 of	 this	 set.	 When	 using	 universal
quantifiers,	 there	 is	 the	 risk	 that	 the	 specified	 behavior	 or	 property	 does	 not
apply	to	all	objects	within	the	specified	set.	Stakeholders	 tend	to	group	objects
together,	even	though	some	of	these	objects	might	be	special	cases	or	exceptions,
where	the	behavior	specified	does	not	apply	to	all	the	objects	of	a	group.

Identify	universal	quantifiers.

It	must	be	verified	whether	the	specified	behavior	really	applies	to	all	objects
summarized	 through	 the	 quantifiers.	 Universal	 quantifiers	 can	 be	 easily
identified	 through	 trigger	 words	 such	 as	 never,	 always,	 no,	 none,	 every,	 all,
some,	or	nothing.

Example	5-4:	Universal	quantifiers
The	system	shall	show	all	data	sets	in	every	submenu.

In	 this	 case,	 the	 following	 question	must	 be	 asked:	Really	 in	 every	 submenu?
Really	all	data	sets?

5.1.4	Incompletely	Specified	Conditions

Identify	and	clarify	condition	structures.

Incompletely	 specified	 conditions	 are	 another	 indicator	 of	 a	 potential	 loss	 of
information.	Requirements	that	contain	conditions	specify	the	behavior	that	must
occur	when	 the	condition	 is	met.	 In	addition,	 they	must	 specify	what	behavior

must	occur	if	the	condition	is	not	met	(the	part	that	is	often	missing).	Especially
in	complex	conditional	structures,	decision	tables	can	be	invaluable	tools	to	find
unspecified	 variants	 of	 conditions	 or	 actions.	 Trigger	 words	 are,	 for	 instance,
if	.	.	.	then,	in	case,	whether,	and	depending	on.

Example	5-5:	Incompletely	specified	condition
The	restaurant	system	shall	offer	all	beverages	to	a	registered	guest	over	the	age	of	20	years.

At	least	one	aspect	remains	unspecified	in	the	example	above:	Which	beverages
shall	be	offered	to	a	guest	that	is	20	years	or	younger?	Clarifying	this	question
may	lead	to	extending	the	requirement	as	follows:

Example	5-6:	More	completely	specified	condition
The	restaurant	system	shall	offer

All	alcohol-free	beverages	to	any	registered	user	younger	than	21	years
All	beverages	including	all	alcoholic	beverages	to	any	user	over	the	age	of	20

5.1.5	Incompletely	Specified	Process	Verbs

Completing	process	words

Some	 process	 verbs	 require	more	 than	 one	 noun	 to	 be	 considered	 completely
specified.	The	verb	transmit,	for	instance,	requires	at	least	three	supplements	to
be	 considered	 complete:	 what	 is	 being	 transmitted,	 from	 where	 it	 is	 being
transmitted,	 and	 to	 where	 it	 is	 being	 transmitted.	 The	 feel	 for	 language	 (also
referred	 to	 as	 “Sprachgefühl”)	 is	 a	 valuable	 tool	 to	 help	 gauge	which	 process
word	 must	 be	 supplemented	 in	 order	 to	 be	 considered	 complete.	 Similarly,
adjectives	and	adverbs	may	need	to	be	supplemented	as	well.	While	the	effect	is
much	less	frequent	with	these	types	of	words	than	with	verbs,	it	is	often	hard	to
recognize.

Avoid	passive	voice.

The	use	of	 incompletely	 specified	process	words	can	mostly	be	avoided	or

kept	to	a	minimum	if	requirements	are	formulated	using	the	active	voice	rather
than	the	passive	voice.

Example	5-7:	Requirement	using	the	passive	voice
To	log	a	user	in,	the	login	data	is	entered.

Use	active	voice.

In	this	requirement	using	passive	voice,	it	is	unclear	who	enters	the	login	data.	It
is	also	unclear	where	and	how	this	 is	done.	 If	 this	 requirement	 is	 reformulated
using	the	active	voice,	at	least	the	agent	or	person	responsible	must	be	included.

The	same	requirement	using	active	voice	might	be	as	follows:

Example	5-8:	Requirement	using	active	voice
The	system	must	allow	the	user	to	enter	his	user	name	and	password	using	the	keyboard	of	the	terminal.

5.2	Requirement	Construction	using	Templates

Quality	by	means	of	requirements	templates	and	glossaries

Requirements	templates	provide	a	simple	and	easily	understandable	approach	to
reduce	language	effects	when	documenting	requirements.	Templates	support	the
author	in	achieving	high	quality	and	syntactic	unambiguousness	in	optimal	time
and	at	low	costs.

Definition	5-1:	Requirements	Template
A	requirements	template	is	a	blueprint	for	the	syntactic	structure	of	individual	requirements.

In	order	 to	achieve	lexical	clearness	 in	 the	documentation	as	well,	 it	 is	wise	 to
use	 requirements	 templates	 in	 conjunction	with	 project	 glossaries	 (see	 section
4.7).

The	 following	 is	 a	 step-by-step	 description	 of	 the	 correct	 application	 of
requirements	templates.

Step	1:	Determine	the	Legal	Obligation

How	legally	binding	is	a	requirement?

In	 the	 beginning,	 you	 should	 determine	 the	 degree	 of	 legal	 obligation	 for	 a
requirement.	Usually,	one	distinguishes	between	legally	obligatory	requirements,
urgently	 recommended	 requirements,	 future	 requirements,	 and	 desirable
requirements.	To	achieve	this	within	a	requirement,	you	can	use	the	modal	verbs
shall,	should,	will,	and	may.	Alternatively,	the	legal	obligation	of	a	requirement
can	be	documented	by	a	specific	requirements	attribute.

Step	2:	The	Requirement	Core

Determine	the	required	process.

The	 core	 of	 each	 requirement	 is	 the	 functionality	 that	 it	 specifies	 (e.g.,	 print,
save,	 paste,	 or	 calculate).	 This	 functionality	 is	 referred	 to	 as	 the	 process.
Processes	are	activities	and	may	only	be	described	using	verbs.	The	process	that
depicts	the	system	behavior	by	means	of	a	requirement	is	to	be	described	in	step
2.

Since	process	words	determine	semantics,	they	must	be	defined	as	clearly	as
possible	and	be	used	as	consistently	as	possible	(see	section	4.7).

Step	3:	Characterize	the	Activity	of	a	System

For	functional	requirements,	the	system	activity	can	be	classified	as	one	of	three
relevant	types:

Autonomous	 system	 activity:	 The	 system	 performs	 the	 process
autonomously.
User	interaction:	The	system	provides	the	process	as	a	service	for	the	user.
Interface	requirement:	The	system	performs	a	process	depending	on	a	third
party	(e.g.,	another	system).	The	system	is	passive	and	waits	for	an	external
event.

In	step	3,	any	kind	of	 system	activity	 that	 is	 specified	by	a	 requirement	of	 the
system	is	documented	using	exactly	one	of	three	requirements	templates.	These

requirements	templates	are	described	in	more	detail	in	the	following	sections.
After	performing	steps	1	through	3,	the	structure	of	the	requirement	has	been

developed	(see	figure	5-2).	The	words	that	are	written	in	angle	brackets	must	be
replaced	accordingly.

Figure	5-2	The	core	of	a	requirement	and	its	legal	obligation

Type	1:
Autonomous	system	activity

The	 first	 template	 type	 is	 used	when	 requirements	 are	 constructed	 that	 depict
system	 activities	 that	 are	 performed	 autonomously.	 The	 user	 does	 not	 interact
with	the	activity.	We	define	the	following	requirements	template:

THE	SYSTEM	SHALL/SHOULD/WILL/MAY	<process	verb>

<Process	verb>	depicts	a	process	verb	as	described	in	step	2,	e.g.,	print	for	print
functionality	or	calculate	for	some	calculation	that	is	performed	by	the	system.

Type	2:
User	interaction

If	the	system	provides	a	functionality	to	a	user	(for	example,	by	means	of	an
input	 interface),	 or	 the	 system	 directly	 interacts	 with	 a	 user,	 requirements	 are
constructed	using	template	type	2:

THE	SYSTEM	SHALL/SHOULD/WILL/MAY	provide	<whom?>	with	the
ability	to	<process	verb>

The	user	that	interacts	with	the	system	is	integrated	into	the	requirement	through
<whom?>.

Type	3:
Interface	requirement

If	the	system	performs	an	activity	and	is	dependent	on	neighboring	systems,
the	 third	 template	 type	 is	 to	be	used.	Whenever	messages	or	data	 are	 received
from	 a	 neighboring	 system,	 the	 system	 must	 react	 by	 executing	 specific
behavior.	The	following	template	has	proven	itself	as	well	suited:

THE	SYSTEM	SHALL/SHOULD/WILL/MAY	be	able	to	<process	verb>

Step	4:	Insert	Objects

Complete	process	verbs.

Some	 process	 verbs	 require	 one	 or	 more	 additional	 objects	 to	 be	 considered
complete	 (see	 section	 5.1.5).	 In	 step	 4,	 potentially	 missing	 objects	 and
supplements	of	objects	(adverbials)	are	identified	and	added	to	the	requirement.
For	instance,	the	requirements	template	for	the	process	verb	print	is	amended	by
the	information	of	what	is	being	printed	and	where	it	is	printed.	The	amendment
can	be	seen	in	figure	5-3.

Figure	5-3	Principle	of	a	complete	requirements	template	without	conditions

Step	5:	Determine	Logical	and	Temporal	Conditions

Add	conditions.

Typically,	 requirements	 do	 not	 document	 continuous	 functionalities,	 but
functionalities	 that	 are	 performed	 or	 provided	 only	 under	 certain	 logical	 or
temporal	 constraints.	 In	 order	 to	 easily	 differentiate	 between	 logical	 and
temporal	 conditions,	 we	 choose	 the	 temporal	 conjunction	 as	 soon	 as	 for
temporal	 conditions	 and	 the	 conditional	 conjunction	 if	 for	 logical	 conditions.
The	conjunction	when	makes	not	clear	whether	a	temporal	or	a	logical	condition
is	described	and	should	therefore	be	avoided.	In	step	5,	quality	requirements	that
describe	 the	conditions	under	which	a	 requirement	 is	 fulfilled	are	added	 to	 the
beginning	of	a	requirement	as	a	subordinate	clause.

Figure	5-4	The	complete	requirements	template	with	conditions

Requirements	templates	should	be	used	when	project	members	show	interest	in	a
formal	 development	 process.	 Style	 and	 creativity	 are	 harshly	 limited	 when
requirements	templates	are	used.	Experience	shows	it	is	best	not	to	make	the	use
of	 requirements	 templates	compulsory,	but	 to	offer	 training	on	 the	method	and
treat	it	as	a	supplemental	tool.

5.3	Summary

System	requirements	are	frequently	documented	using	natural	language.	Typical
advantages	that	arise	from	natural	language	requirements	are	good	readability	of
requirements,	 the	 fact	 that	 natural	 language	 can	 be	 universally	 applied	 to
document	any	circumstance,	 and	 the	 fact	 that	no	prior	knowledge	 is	necessary
regarding	the	notation.	On	the	other	hand,	there	are	a	number	of	disadvantages
that	 arise	 from	 the	 fact	 that	 natural	 language	 requirements	 are	 not	 formalized,
e.g.,	ambiguity.	Since	project	members	interpret	requirements	differently	due	to
differences	 in	 their	 respective	 knowledge,	 social	 background,	 and	 experiences,
using	 natural	 language	 for	 requirements	 documentation	 often	 leads	 to

misunderstanding	 in	 practice.	 These	 disadvantages	 can	 be	 minimized	 during
requirements	 documentation—for	 example,	 by	 making	 use	 of	 requirements
templates	and	by	checking	the	requirements	against	linguistic	effects.

6	Model-Based	Requirements
Documentation

During	 model-based	 documentation	 of	 requirements	 in	 requirements
engineering,	three	types	of	requirements	are	documented	independently	and	used
in	conjunction:

Goals	describe	intentions	of	stakeholders	or	groups	of	stakeholders.	Goals
can	potentially	conflict	with	one	another.
Use	cases	and	scenarios	document	exemplary	sequences	of	system	usage.
Scenarios	are	grouped	together	in	use	cases.
System	 requirements	 (generally	 referred	 to	 as	 requirements)	 describe
detailed	 functions	 and	 qualities	 that	 the	 system	 to	 be	 developed	 shall
implement	 or	 possess.	 In	 addition,	 system	 requirements	 provide	 complete
and	precise	information	to	serve	as	input	for	subsequent	development	steps.

In	 practice,	 requirements	 are	 often	 documented	 using	 natural	 language.
However,	 it	 can	 be	 observed	 that	 requirements	 are	 increasingly	 often
documented	using	models.	Requirement	models	are	used	 in	addition	 to	natural
language	 requirements	 documentation	 and	 partly	 replace	 requirements	 that
would	have	been	documented	using	natural	language.

6.1	The	Term	Model

Models	as	abstracting	images	from	reality

A	model	 is	 an	 image	 that	 abstracts	 from	 reality	 or	 that	 serves	 as	 a	 abstracted
representation	 of	 reality	 that	 is	 to	 be	 created.	 Modeling	 may	 be	 applied	 to

material	or	immaterial	objects	of	an	existing	reality	or	a	reality	to	be	developed.
Similarly	to	[Stachowiak	1973],	we	define	the	term	model	as	follows:

Definition	6-1:	Model
A	model	is	an	abstract	representation	of	an	existing	reality	or	a	reality	to	be	created.

6.1.1	Properties	of	Models

Every	 model	 possesses	 three	 important	 properties	 that	 are	 also	 the	 prevalent
advantages	of	models:

Mapping	 of	 reality:	 Every	 model	 maps	 certain	 aspects	 of	 the	 observed
reality	onto	 its	modeling	elements.	Model	 creation	can	be	descriptive	and
prescriptive	 in	 nature.	 In	 the	 case	 of	 descriptive	 model	 construction,	 the
resulting	model	documents	 the	 existing	 reality.	 In	 the	 case	of	prescriptive
model	construction,	the	resulting	model	serves	as	a	prototype	for	a	fictitious
reality.	 Depending	 on	 the	 perspective,	 models	 themselves	 can	 be	 both
descriptive	 and	 prescriptive	 at	 the	 same	 time.	 For	 example,	 a	 model	 is
descriptive	 with	 regard	 to	 the	 conception	 of	 the	 stakeholder	 who	 is
constructing	it	and	prescriptive	with	regard	to	the	system	to	be	developed.
Reduction	 of	 reality:	Models	 reduce	 the	mapped	 reality.	 It	 is	 common	 to
differentiate	 between	 selection	 and	 compression.	 During	 selection,	 only
particular	aspects	that	are	part	of	the	universe	of	discourse	of	the	system	are
modeled.	 In	 contrast,	 aspects	 of	 the	 subject-matter	 of	 the	 system	 are
summarized	during	compression.
Pragmatic	property:	A	model	 is	 always	 constructed	 for	 a	 special	 purpose
and	 within	 a	 special	 context.	 The	 purpose	 of	 the	 model	 may	 affect	 the
construction	and	the	purpose-driven	reduction	of	reality	within	the	models.
Ideally,	a	model	contains	only	the	information	necessary	for	the	respective
purpose.

Typically,	 graphical	 models	 are	 used	 in	 requirements	 engineering.	 Their
modeling	elements	 are	 conceptualizations	of	material	or	 immaterial	objects,	 or
people,	in	reality.

6.1.2	Modeling	Languages

Syntax	and	semantics

In	order	to	construct	conceptual	models,	specific	modeling	languages	are	used.	A
modeling	language	is	defined	by	its	syntax	and	semantics:

Syntax:	The	syntax	of	a	modeling	language	defines	the	modeling	elements
to	be	used	and	specifies	the	valid	combinations	thereof.
Semantics:	The	semantics	defines	 the	meaning	of	 the	 individual	modeling
elements	and	serves	 therefore	as	a	 foundation	 for	 the	 interpretation	of	 the
models	of	the	respective	modeling	language.

Different	degrees	of	formalization

Conceptual	 modeling	 languages	 can	 be	 classified	 as	 formal,	 informal,	 and
semiformal,	 depending	 on	 the	 degree	 of	 formalization.	 The	 degree	 of
formalization	 of	 a	 modeling	 language	 depends	 on	 the	 magnitude	 of	 formal
definitions	(e.g.,	mathematical	calculus)	that	define	the	syntax	and	semantics.

6.1.3	Requirements	Models

Conceptual	 models	 that	 document	 the	 requirements	 of	 a	 system	 are	 called
requirements	 models.	 The	 Unified	 Modeling	 Language	 (UML)	 is	 frequently
used	 to	construct	 requirements	models	 [OMG	2007].	UML	has	developed	 into
the	quasi-standard	for	model-based	construction	of	software	systems.	It	consists
of	a	set	of	partially	complementary	modeling	languages	that	are	particularly	used
in	 requirements	 engineering	 to	 model	 the	 requirements	 of	 a	 system	 from
different	perspectives.	Extensive	examples	of	modeling	using	UML	can	be	found
in	[Rupp	et	al.	2007],	for	instance.

Requirements	models	vs.	design	models

A	 considerable	 difference	 between	 the	 conventional	 use	 of	 conceptual
models	in	system	development	and	model	usage	for	requirements	documentation
is	 that	 conventional	 models	 document	 solutions	 chosen	 during	 system
development.	Requirements	models,	on	the	other	hand,	depict	specific	aspects	of

the	underlying	problem.

6.1.4	Advantages	of	Requirements	Models

Increased	understandability

Research	on	human	cognition	has	shown	that	information	can	be	perceived	and
memorized	 faster	 and	 better	 when	 depicted	 graphically	 as	 opposed	 to	making
use	of	natural	 language.	 (e.g.,	 [Glass	and	Holyoak	1986],	 [Kosslyn	1988],	 and
[Mietzel	1998].	These	findings	can	be	applied	to	the	use	of	requirements	models
in	particular.

Support	perspectives	of	documentation.

An	additional	advantage	when	using	requirements	models	is	that	in	contrast
to	natural	 language,	the	modeling	languages	used	have	a	strictly	defined	focus.
An	 example	 is	 the	 different	 kinds	 of	 maps	 that	 can	 be	 drawn	 for	 a	 city.
Depending	on	what	aspect	of	the	city	is	being	mapped	(modeled),	different	types
of	abstraction	can	be	used	to	construct	the	map.	For	instance,	a	subway	map	will
show	 underground	 subway	 stations	 and	 subway	 lines.	 However,	 the	 length	 of
each	connection	on	the	map	may	not	accurately	depict	the	distance	between	the
stations	but	may	estimate	the	transit	time	instead.	In	contrast	to	a	subway	map	of
a	city,	a	road	map	of	a	city	accurately	depicts	the	streets,	paths,	and	locations	of
sights.	 Both	 models	 depict	 the	 same	 reality,	 but	 with	 a	 different	 focus	 that
defines	purpose-driven	abstractions.

Requirements	 models	 also	 have	 the	 advantage	 that	 the	 different	 types	 of
modeling	 elements	 within	 the	 same	modeling	 language	 dictate	 the	 method	 of
abstraction	as	well	as	what	is	being	abstracted	and	what	is	not.

6.1.5	Combined	Use	of	Models	and	Natural	Language

Using	both	natural	language	and	requirements	models	in	combination	allows	the
advantages	of	both	documentation	techniques	to	be	exploited	while	minimizing
their	 disadvantages.	 For	 example,	 natural	 language	 requirements	 can	 be
summarized	and	 their	 interrelations	depicted	using	models.	On	 the	other	hand,
natural	 language	 can	 help	 enrich	 requirements	models	 and	modeling	 elements

with	additional	information.

6.2	Goal	Models

Many	 methods	 in	 requirements	 engineering	 are	 based	 on	 the	 explicit
consideration	 of	 stakeholders’	 intentions	 by	 means	 of	 goals	 (e.g.,	 [van
Lamsweerde	 et	 al.	 1991]	 and	 [Yu	 1997]).	 Ordinarily,	 the	 effort	 required	 to
explicitly	consider	goals	during	requirements	engineering	is	minimal.	However,
the	positive	impact	on	requirements	engineering—if	goals	are	modeled—and	on
the	quality	and	comprehensiveness	of	the	requirements	is	very	high.	Goals	are	a
stakeholder’s	(e.g.,	a	person’s	or	an	organization’s)	description	of	a	characteristic
property	of	the	system	to	be	developed	or	the	development	project.

Natural-language-based	and	model-based	documentation

Goals	are	very	well	suited	to	refine	the	vision	of	the	system.	Refining	a	goal
is	 known	 as	 goal	 decomposition.	 Goals	 can	 be	 documented	 using	 natural
language	 (e.g.,	 by	 means	 of	 predesigned	 templates)	 or	 using	 goal	 models.	 A
widely	known	and	very	common	goal	modeling	technique	is	the	use	of	AND/OR
trees.	 By	 means	 of	 AND/OR	 trees,	 hierarchical	 decompositions	 can	 be
documented.	 The	 type	 of	 refinement	 relation	 is	 depicted	 by	 graphic
representations	of	 the	branches.	The	direction	of	 the	goal	decomposition	 is	not
represented	through	branches	but	through	the	top-down	structure	of	the	tree.

6.2.1	Goal	Documentation	Using	AND/OR	Trees

Using	 AND/OR	 trees,	 two	 types	 of	 decomposition	 relationships	 can	 be
distinguished.	Figure	6-1	 schematically	 shows	 these	 types	of	decomposition	as
well	as	their	modeling	elements.

Figure	6-1	Modeling	of	goal	decomposition	using	AND/OR	trees

AND-decomposition	vs.	OR-decomposition

With	 regard	 to	 decomposition	 relations,	 one	 can	 differentiate	 between	 AND-
decomposition	 and	 OR-decomposition.	 In	 case	 of	 AND-decomposition,	 every
sub-goal	must	be	fulfilled	so	that	the	super-goal	(the	root)	is	fulfilled.	In	contrast,
in	OR-decomposition,	 it	 suffices	 if	at	 least	one	sub-goal	 is	 fulfilled	so	 that	 the
super-goal	is	met.

6.2.2	Example	of	AND/OR	Trees

Figure	 6-2	 shows	 an	 AND/OR	 tree	 that	 documents	 the	 hierarchical
decomposition	of	the	goal	“Comfortable	navigation	to	destination”.

Figure	6-2	Goal	model	in	the	form	of	an	AND/OR	tree

Modeling	goals	with	AND/OR	trees

As	 the	 goal	 model	 in	 figure	 6-2	 shows,	 the	 goal	 “comfortable	 navigation	 to
destination”	 is	 refined	into	 the	 three	sub-goals	“dynamic	route	calculation	with
respect	to	traffic	congestion”,	“comfortable	destination	input”,	and	“comfortable
route	 guidance”	 via	AND-decomposition.	 This	 depicts	 that	 all	 three	 sub-goals
must	 be	met	 to	 consider	 the	 super-goal	 fulfilled.	The	 sub-goal	 “dynamic	 route
calculation	with	respect	to	traffic	congestion”	in	turn	is	refined	by	the	two	sub-
goals	“manual	input	of	traffic	conditions”	and	“automatic	update	of	traffic	data”.
The	 type	of	 decomposition	 relation	depicts	 that	 only	one	of	 the	 two	 sub-goals
must	be	met	to	consider	the	super-goal	met.

6.3	Use	Cases

Use	cases	were	first	proposed	in	[Jacobson	et	al.	1992]	as	a	method	to	document
the	functionalities	of	a	planned	or	existing	system	on	the	basis	of	simple	models.
The	 use	 case	 approach	 is	 based	 on	 two	 concepts	 that	 are	 used	 in	 conjunction
with	one	another:

Use	case	diagrams
Use	case	specifications

6.3.1	UML	Use	Case	Diagrams

Relations	between	use	cases

Use	 case	 diagrams	 in	 the	 UML	 [OMG	 2007]	 (see	 section	 4.2.3)	 are	 simple
models	 to	 schematically	 document	 the	 functions	 of	 a	 system	 from	 a	 user’s
perspective	and	to	document	the	interrelations	of	the	functions	of	a	system	and
the	relations	between	these	functions	and	their	environment.

Modeling	Elements	of	UML	Use	Case	Diagrams

Figure	6-3	shows	the	most	essential	modeling	elements	of	use	case	diagrams,	as
defined	in	the	Unified	Modeling	Language	(UML)	[OMG	2007].

Figure	6-3	Essential	modeling	elements	of	use	case	diagrams

1.	 Use	cases:	Uses	 cases	 that	 are	 defined	 for	 the	 system	 are	 depicted	 using
oval	shapes.	These	shapes	contain	the	name	of	the	use	case.	Alternatively,
the	name	can	be	written	beneath	the	use	case.

2.	 Actors:	 Actors	 are	 outside	 the	 system	 boundary	 and	 represent	 people	 or
systems	 that	 interact	 with	 the	 system	modeled.	 Actors	 are	 depicted	 by	 a
rectangle	 that	 receives	 the	 name	 of	 the	 actor	 and	 is	 tagged	 with	 the
stereotype	“actor”.	If	the	actor	is	a	person,	a	stick	figure	may	be	used.	If	the
actor	 is	 a	 system,	 either	 a	 rectangle	 or	 a	 stick	 figure	 may	 be	 used	 in
conjunction	with	the	stereotype	“system”.

3.	 System	boundaries:	System	boundaries	within	a	use	case	diagram	separate
the	parts	of	the	use	case	that	are	part	of	the	system	from	the	parts	(people	or
systems)	that	are	outside	the	system	boundary.	Optionally,	the	name	of	the
system	may	be	denoted	at	the	system	boundary	in	the	diagram.

4.	 Extend	relation:	An	extend	relation	depicts	that	an	interaction	sequence	that
belongs	to	use	case	A	extends	some	interaction	sequence	in	use	case	B	at	a
specified	 point.	 This	 is	 known	 as	 the	 extension	 point.	 The	 extension	 is
triggered	by	the	condition	defined.

5.	 Include	relation:	An	include	relation	from	one	use	case	to	another	use	case
depicts	 that	 the	 interaction	 sequence	 of	 the	 first	 use	 case	 includes	 the
interaction	sequence	of	the	other	use	case.

6.	 Relation	 between	 actors	 and	 use	 cases:	 If	 communication	 between	 a	 use
case	 and	 one	 or	more	 actors	 takes	 place	 during	 the	 execution	 of	 the	 use
case,	the	communication	must	be	annotated	by	means	of	a	communication
relation	between	the	respective	actors	and	the	use	case.

Example	of	UML	Use	Case	Diagrams

Figure	6-4	shows	an	example	of	a	use	case	diagram.

Figure	6-4	An	example	using	modeling	elements	of	use	case	diagrams

The	 model	 comprises	 the	 use	 cases	 “download	 traffic	 information”,	 “retrieve
current	position”,	and	“input	navigate	to	destination”	elements.	The	relations	in
figure	6-4	that	are	labeled	by	numbers	are	explained	in	further	detail	below:

Include

1.	 The	 use	 case	 “navigate	 to	 destination”	 is	 related	 to	 the	 use	 cases	 “input
destination”	 and	 “retrieve	 current	 position”	 via	 an	 include	 relation.	 The
relationship	depicts	that	the	interaction	steps	defined	in	the	use	cases	“input
destination”	 and	 “retrieve	 current	 position”	 are	 contained	 in	 the	 use	 case
“navigate	to	destination”.

Extend

2.	 The	extend	 relation	between	 the	use	cases	“download	 traffic	 information”
and	 “navigate	 to	 destination”	 defines	 that	 the	 interaction	 steps	 defined	 in
the	use	case	“download	traffic	information”	are	included	in	the	interaction
steps	of	the	use	case	“navigate	to	destination”	if	a	certain	condition,	such	as
“avoid	congestion”,	is	met.	The	extension	point	“avoid	congestion”	depicts
the	 step	 in	 the	 use	 case	 “navigate	 to	 destination”	 at	which	 the	 additional
interaction	steps	are	being	executed.

Generalization

UML	also	provides	a	generalization	relation	between	use	cases	or	actors.	In	this
case,	the	specializing	use	cases	or	actors	inherit	the	properties	of	the	generalizing
use	case	or	actor	(e.g.,	[Rumbaugh	et	al.	2005]).	For	instance,	the	actors	“service
mechanic”	and	“customer	service	representative”	can	be	generalized	as	the	actor
“employee”.	 The	 generalizing	 actor	 would	 carry	 all	 aspects	 that	 the	 actors
“service	mechanic”	and	“customer	service	representative”	have	in	common	(e.g.,
employee	ID).

6.3.2	Use	Case	Specifications

Use	 case	 diagrams	 show	 the	 system’s	 relevant	 functions	 from	 a	 user’s
perspective	 and	 specific	 relationships	 between	 the	 functions	 of	 the	 system	 or
between	 functions	of	 the	 system	and	aspects	 in	 the	 system’s	 context.	With	 the
exception	of	a	use	case’s	name	and	its	relationships,	use	cases	diagrams	do	not
document	any	information	about	the	individual	use	cases	such	as	the	systematic
interaction	 between	 a	 use	 case	 and	 an	 actor.	 This	 information	 is	 documented
textually	by	means	of	adequate	templates	in	conjunction	with	use	case	diagrams.

Reference	templates	for	the	documentation	of	use	cases

Pertinent	 literature	 proposes	 different	 templates	 for	 textual	 specification	 of
use	cases	(e.g.,	 [Cockburn	2001]).	These	 templates	define	 types	of	 information
that	 should	be	documented	 for	 a	use	case	and	 suggest	 an	appropriate	 structure
for	 the	 information.	 The	 template	 references	 therefore	 document	 experience-
based	 knowledge	 regarding	 structured	 textual	 documentation	 of	 use	 cases.	 In
order	to	textually	specify	use	cases,	the	template	in	table	6-1	is	suitable.

Table	6-1	Template	for	textual	use	case	documentation

Rows	of	a	use	case	template

The	template	for	the	specification	of	use	cases	contains	the	following	attributes:

Attributes	for	unique	identification	of	use	cases	(rows	1	and	2)
Management	attributes	(rows	3	through	7)

Attribute	for	the	description	of	the	use	case	(row	8)
Specific	use	case	attributes,	e.g.,	the	trigger	event	(row	9),	actors	(row	10),
pre-and	post-conditions	 (rows	11	 and	12),	 the	 result	 of	 the	 use	 case	 (row
13),	the	main	scenario	(row	14),	alternative	and	exception	scenarios	(rows
15	and	16),	and	cross	references	to	quality	requirements	(row	17)

Table	6-2	 shows	 the	 specification	 of	 the	 use	 case	 “navigate	 to	 destination”	 by
means	of	the	reference	template	suggested	in	table	6-1.

Table	6-2	Example	of	template-based	documentation	of	a	use	case

6.4	Three	Perspectives	on	the	Requirements

Separately	documenting	the	perspectives

When	 documenting	 requirements	 on	 the	 basis	 of	 models,	 one	 typically
distinguishes	 three	 types	 of	 perspectives:	 data,	 function,	 and	 behavior	 (see
section	 4.2.1).	 Each	 perspective	 is	 documented	 separately,	 using	 suitable
conceptual	modeling	languages	[Davis	1993],	[Pohl	et	al.	2005]:

Data	perspective:	In	this	perspective,	the	structures	of	input	and	output	data
as	 well	 as	 static-structural	 aspects	 of	 the	 usage	 and	 dependency
relationships	of	the	system	in	the	system	context	are	documented.
Functional	perspective:	This	perspective	documents	which	 information	of
the	system	context	is	being	manipulated	by	the	system	to	be	developed	and
which	data	is	being	transmitted	to	the	system	context	by	the	system.
Behavioral	perspective:	The	embedding	of	the	system	in	the	system	context

is	documented	on	 the	basis	of	 states	 in	 this	perspective.	This	 is	 done,	 for
instance,	 by	 documenting	 the	 reaction	 of	 the	 system	 to	 events	within	 the
system	context,	documenting	 the	conditions	 that	 trigger	a	state	change,	or
documenting	the	effects	that	the	system	has	on	its	environment.

Examples	of	the	three	perspectives

Figure	6-5	illustrates	the	three	perspectives	on	functional	requirements	and	gives
an	 example	 of	 a	 suitable	 modeling	 language	 for	 each	 perspective	 that	 can	 be
used	to	document	the	requirements.	This	way,	requirements	aspects	that	pertain
to	 the	static	structure	can	be	modeled	using	UML	class	diagrams,	 for	 instance.
Requirements	in	the	functional	perspective	can	be	modeled	using	UML	activity
diagrams	and	requirements	 in	 the	behavioral	perspective	can	be	modeled	using
statecharts	(see	sections	6.6	and	6.7).

Perspectives	are	not	disjoint.

Certain	aspects	of	the	models	of	a	particular	perspective	can	also	be	found	in
other	 perspectives.	 The	 three	 perspectives	 are	 therefore	 not	 disjoint.	 For
example,	the	data,	whose	static	structure	is	defined	in	a	UML	class	diagram	can
potentially	 also	 be	 found	 in	 the	 functional	 perspective	 because	 it	 depicts	 the
inputs	 and	 outputs	 of	 actions	 in	 a	 UML	 activity	 diagram.	 As	 the	 three
perspectives	 are	 not	 disjoint,	 the	 models	 can	 be	 reciprocally	 checked	 for
completeness	and	consistency	with	regard	to	the	information	that	is	modeled	at
the	intersections.

Figure	6-5	Three	perspectives	on	requirements

6.5	Requirements	Modeling	in	the	Data	Perspective

Several	 different	 modeling	 languages	 are	 well	 suited	 to	 modeling	 structural
aspects	 of	 requirements	 in	 the	 data	 perspective.	Commonly,	 entity-relationship
models,	extensions	of	the	traditional	entity-relationship	model	according	to	Chen
[Chen	1976.],	and,	increasingly,	class	diagrams	of	the	UML	(e.g.,	[Rumbaugh	et
al.	2005])	are	used	as	requirements	models	of	the	data	perspective.

6.5.1	Entity-Relationship	Diagrams

The	traditional	entity-relationship	model

Traditionally,	 entity-relationship	 diagrams	 are	 used	 for	 modeling	 the	 data
perspective	 because	 they	 display	 the	 structure	 of	 an	 object	 of	 an	 universe	 of
discourse	by	means	of	entity	types	and	relation	types	[Chen	1976].

Extensions	of	the	entity-relationship	model

A	 number	 of	 extensions	 for	 the	 entity-relationship	 model	 have	 been

suggested.	 These	 extensions	 mainly	 concern	 the	 generalization/specialization
relations,	inheritance	mechanisms,	and	roles	of	entities	and	extend	the	model	by
a	(min,	max)-notation	for	cardinalities	of	relations.

Modeling	Elements	of	Entity-Relationship	Diagrams

According	 to	 [Chen	 1976],	 the	 modeling	 language	 used	 to	 construct	 entity-
relationship	diagrams	includes	the	modeling	elements	depicted	in	figure	6-6.

Figure	6-6	Important	modeling	elements	of	entity-relationship	diagrams	according	to	Chen

Classification:	abstraction	from	concrete	objects

Entity	 types	 define	 a	 set	 of	 entities	 within	 the	 universe	 of	 discourse	 (that	 is,
objects	with	the	same	properties,	such	as	people	or	items).	An	entity	type	(often
mistakenly	referred	to	as	an	entity)	abstracts	from	the	concrete	characteristics	of
these	 entities	 and	 therefore	 classifies	 a	 set	 in	 the	 sense	 of	 the	 classification	 of
uniform	entities.	For	instance,	the	entity	type	“pilot”	classifies	all	people	within
the	 universe	 of	 discourse	 that	 have	 the	 characteristic	 of	 holding	 a	 piloting
license.

Abstraction	from	concrete	relationships

A	relation	type	abstracts	from	a	concrete	characteristic	of	a	relationship	and
of	entities	that	are	in	relation	to	one	another.	A	relation	type	classifies	the	set	of
uniform	 relations	 between	 entity	 types	 within	 the	 universe	 of	 discourse.	 For
example	the	relation	type	“executes”	can	be	defined	between	the	two	entity	types
“pilot”	and	“flight”	to	represent	concrete	“executes”-relations	between	concrete
pilots	 and	 concrete	 flights.	 If	 a	 concrete	 “is_passenger”	 relation	 is	 defined
between	a	concrete	passenger	“John	Locke”4	and	a	concrete	flight	with	the	flight
number	“OA	815”5,	then	this	relation	depicts	that	“John	Locke”	is	a	passenger	of
the	flight	with	the	flight	number	“OA	815”.

Properties	of	entity	types	and	relation	types

An	 attribute	 can	 be	 defined	 for	 entity	 types	 as	 well	 as	 relation	 types.	 An
attribute	 defines	 the	 properties	 of	 an	 entity	 type	 or	 a	 relation	 type.	 Possible
attributes	for	the	entity	type	“passenger”	could	be	“family	name”,	“given	name”,
“passport	number”,	and	“reserved	seat”,	for	instance.

Sketch	level	vs.	instance	level

An	 entity-relationship	 model	 documents	 the	 structure	 of	 a	 universe	 of
discourse	by	means	of	entity	types	(i.e.,	classes	of	uniform	entities)	and	relations
(i.e.,	 classes	 of	 uniform	 relationships).	An	 entity-relationship	model	 is	 defined
on	 the	modeling	 level	and	defines	 the	set	of	all	valid	 instances	on	 the	 instance
level.

Number	of	relation	instances

The	cardinality	of	a	(binary)	relation	defines	the	number	of	relation	instances
that	an	entity	may	participate	in	[Elmasri	and	Navathe	2006].	If	no	cardinalities
are	annotated	for	a	specific	relation	type,	it	is	assumed	that	an	arbitrary	number
of	 entities	 (in	 other	 words,	 at	 least	 zero	 entities)	 may	 participate	 in	 such	 a
relation.	Using	cardinalities	for	relations	therefore	limits	the	number	of	instances
that	are	principally	possible	in	an	entity-relationship	diagram.

Example	of	an	Entity-Relationship	Diagram

The	entity-relationship	model	shown	in	figure	6-7	shows	four	entity	types	(i.e.,
classes	 of	 entities)	 and	 three	 relation	 types	 (i.e.,	 classes	 of	 relationships).	 The
individual	entity	types	possess	attributes	that	describe	specific	properties	of	the
associated	entities.	For	example,	the	entity	type	“traffic	jam	information”	has	the
attributes	“road”,	“start”,	and	“length”,	which	depict	the	road	on	which	a	traffic
jam	is	currently	present,	the	GPS	coordinates	of	the	starting	point	of	the	jam,	and
the	 length	 of	 the	 jam.	 The	 relation	 type	 “queries”	 between	 the	 entity	 types
“navigation	 device”	 and	 “traffic	 jam	 information”	 means	 that	 on	 the	 instance
level,	a	relationship	between	a	concrete	navigation	device	and	the	information	on
zero	 or	more	 concrete	 traffic	 jams	 exists.	 The	 cardinalities	 of	 the	 entity	 types
with	 regard	 to	 the	 relation	 type	 “queries”	 means	 that	 a	 concrete	 navigation
device	can	query	information	on	an	arbitrary	amount	(“N”)	of	traffic	jams.	In	the

other	 direction,	 any	 traffic	 jam	 information	 can	 be	 queried	 by	 an	 arbitrary
number	(“M”)	of	navigation	devices.

Figure	6-7	Entity-relationship	diagram	(data	model)	according	to	Chen

6.5.2	UML	Class	Diagrams

Static	perspective:	data/structure

Class	 diagrams	 of	 the	 UML	 can	 be	 used	 to	 model	 the	 data	 perspective	 of
requirements	of	a	system	to	be	developed	as	well.	A	class	diagram	consists	of	a
set	of	classes	and	associations	between	classes.	Classes	and	associations	in	UML
class	diagrams	are	similar	to	entity	types	and	relation	types	in	entity-relationship
diagrams.	Class	models	 possess	 additional	modeling	 elements	 (e.g.,	 that	 allow
for	the	specification	of	valid	operations	on	the	instances	of	a	class)	and	thus	have
a	greater	power	of	description.6

Figure	6-8	Important	modeling	elements	of	class	diagrams	of	UML

Modeling	Elements	of	Class	Diagrams

Figure	6-8	shows	important	modeling	elements	of	class	diagrams	of	the	UML	as
well	as	a	number	of	modeling	examples.

Classes

A	class	is	depicted	by	a	rectangle	that	is	separated	into	sections	(also	called
compartments).	In	the	upper	section,	attributes	are	depicted	that	are	described	in
more	detail	by	the	instances	of	the	class.	In	the	lower	sections,	all	operations	that
can	 be	 performed	 on	 the	 instances	 of	 the	 class	 are	 listed.	 Depending	 on	 the
modeling	goal,	 i.e.,	 depending	on	 the	purpose	of	 the	model,	 the	compartments
for	attributes	and/or	methods	can	also	be	hidden	or	left	out	entirely.

Associations,	multiplicities,	and	roles

Associations	 between	 classes	 are	 depicted	 by	 edges.	 Associations	 can
optionally	be	given	a	name.	In	addition,	multiplicities	can	be	annotated	at	each
end	of	an	association.	Multiplicities	are	statements	about	the	instance	level	of	a

class	and	depict	how	many	instances	of	a	class	may	be	associated	in	a	particular
way	with	a	defined	number	of	instances	of	another	class.	By	annotating	optional
roles	 at	 one	 or	 both	 ends	 of	 an	 association,	 the	meaning	 of	 the	 instances	 of	 a
class	with	regard	to	the	association	can	the	further	refined.

Aggregation	and	composition

Aggregations	 and	 compositions	 are	 specific	 types	 of	 associations.	 Both
describe	 a	 relationship	 between	 a	 whole	 and	 its	 constituents.	 A	 composition
documents	 a	 stronger	 binding	 than	 an	 aggregation	 in	 that	 a	 constituent	 in	 a
composition	 cannot	 exist	 without	 its	 whole.	 In	 class	 models	 of	 the	 UML,	 an
aggregation	is	depicted	as	an	empty	diamond	and	a	composition	is	depicted	as	a
filled	diamond.

Generalization

Moreover,	 in	 class	 diagrams,	 generalizations	 between	 classes	 can	 be
documented.	 A	 generalization	 between	 classes	 of	 the	 UML	 is	 a	 relationship
between	a	more	specific	class	(the	sub-type)	and	a	more	general	class	(the	super-
type).	 The	 sub-type	 in	 a	 generalization	 relation	 inherits	 all	 properties	 of	 the
super-type	and	can	adapt	and/or	extend	these.

Example	of	a	UML	Class	Diagram

The	 class	 diagram	 in	 figure	 6-9	 comprises	 six	 classes	 that	 all	 have	 respective
attributes.	The	associations	between	the	classes	are	depicted	by	means	of	edges.
For	example,	an	association	with	the	name	“calculates”	exists	between	the	class
“navigation	device”	and	the	class	“route”.	Taking	into	account	the	multiplicities,
this	 association	 depicts	 that	 a	 navigation	 system	 can	 calculate	 an	 arbitrary
amount	(at	least	zero,	as	depicted	by	an	asterisk)	of	routes.	In	return,	every	route
can	be	calculated	by	an	arbitrary	amount	()	of	navigation	devices.	A	route	is	an
aggregation	of	at	least	one,	but	arbitrarily	many	(1..*)	road	segments,	and	every
road	 segment	 belongs	 to	 an	 arbitrary	 amount	 (*)	 of	 routes.	A	 road	 segment	 is
defined	by	a	 road	name	as	well	as	 start	and	end	points.	Figure	6-9	also	shows
that	“navigation	device	w/	congestion	avoiding”	is	a	specialization	of	the	generic
type	 “navigation	 device”.	 The	 sub-type	 “navigation	 device	 w/	 congestion
avoiding”	inherits	the	properties	(in	this	case,	the	attribute	“identification”)	from
its	 super-type	 “navigation	 device”	 and	 extends	 the	 set	 of	 attributes	 by	 an

attribute	that	specifies	the	threshold	length	of	a	traffic	congestion,	which	triggers
a	route	recalculation.

Figure	6-9	Class	diagram	in	UML	notation

6.6	Requirements	Modeling	in	the	Functional	Perspective

The	 functional	 perspective	 of	 requirements	 deals	 with	 the	 transformation	 of
input	 data	 received	 from	 the	 environment	 into	 output	 data	 released	 into	 the
environment	 of	 the	 system.	 There	 are	 a	 number	 of	 different	 model-based
approaches	that	can	be	used	to	model	the	functional	perspective	of	requirements.
The	 majority	 of	 these	 techniques	 is	 based	 on	 the	 structured	 system	 analysis
approaches	 of	 the	 1970s	 and	 1980s,	 such	 as	 the	 structured	 analysis	 [DeMarco
1978,	Weinberg	1978]	or	the	essential	system	analysis	[McMenamin	and	Palmer
1988.].

6.6.1	Data	Flow	Diagrams

At	 the	 center	 of	 attention	 of	 modeling	 requirements	 from	 a	 functional
perspective	are	diagrams	that	model	the	functionality	of	the	respective	system	by
means	 of	 processes	 (functions),	 data	 stores,	 sources,	 and	 sinks	 in	 the	 system
environment	as	well	as	data	flow.	A	commonly	used	type	of	functional	models
are	 data	 flow	 diagrams,	 as	 suggested	 in	 the	 structured	 analysis	 according	 to
[DeMarco	 1978].	 Data	 flow	 models	 allow	 modeling	 the	 system	 on	 different
levels	of	abstraction.

Modeling	Elements	of	Data	Flow	Diagrams

Figure	6-10	shows	the	modeling	elements	in	data	flow	diagrams	in	the	notation
suggested	by	[DeMarco	1978].

Figure	6-10	Important	modeling	elements	of	data	flow	diagrams	according	to	DeMarco

Data	manipulation

Processes	depict	the	functions	of	a	particular	system	necessary	to	transform	the
data	 that	 flows	 into	 the	 system	 (information	 flow).7	 A	 process	 consumes	 the
input	 data,	 processes	 this	 data,	 and	 outputs	 the	 result	 of	 the	 processing	 in	 the
form	of	 output	 data.	How	 the	 data	 is	 transformed	 is	 not	 depicted	 in	 data	 flow
diagrams.

Resting	data

Data	 stores	 are	 abstract	 concepts	 designed	 to	 depict	 persistent	 data.
Processes	can	access	data	in	a	data	store	in	a	read	and	write	manner	so	that	the
processes	may	access	necessary	input	data	or	persistently	store	output	data.

Objects	in	the	system	environment

Sources/sinks	 describe	 objects	 (like	 people,	 groups	 of	 people,	 departments,
organizations,	or	systems)	in	the	environment	of	the	system	that	exchange	data
with	the	system.	Sources/sinks	are	aspects	of	the	system	environment	and	cannot
be	altered	during	system	development	 (see	section	2.1).	Sources	are	aspects	of
the	system	environment	that	deliver	data	to	the	system,	while	sinks	receive	data
from	the	system.

Flowing	data

A	data	flow	describes	data	that	is	transported	between	processes,	data	stores,
and	 sources/sinks	 [Yourdon	 1989].	 In	 requirements	 models,	 a	 data	 flow	 can

model	 both	 the	 transport	 of	material	 and	 immaterial	 objects,	 e.g.,	 information
flow	or	material	flow.	Typically,	only	the	most	important	data	flows	are	modeled
in	data	 flow	diagrams.	Data	 flows	 that	are	not	 relevant	 for	 the	requirements	of
the	system	can	be	neglected.

Example	of	a	Data	Flow	Diagram

System	interfaces

Figure	6-11	shows	a	simplified	data	flow	diagram	of	a	navigation	system	in	the
notation	suggested	by	DeMarco.	The	interfaces	of	the	system	to	the	context	are
defined	 by	 the	 data	 flows	 to	 the	 sources	 “GPS	 satellite	 system”	 and	 “traffic
information	server”	as	well	as	to	the	sink	“driver”.

Process	“calculate	route”

The	 functionality	 of	 the	 navigation	 system	 is	 separated	 into	 three	 distinct
processes.	 Process	 one,	 named	 “calculate	 route”,	 receives	 up-to-date	 traffic
information	via	its	interface	to	the	source	“traffic	information	server”	as	well	as
data	 about	 the	 current	 location	 via	 its	 interface	 to	 the	 source	 “GPS	 satellite
system”.	 In	addition,	 the	process	“calculate	 route”	 is	provided	with	 the	desired
destination	by	the	driver	of	the	vehicle.	The	calculated	route	is	stored	in	the	data
store	“route	data”.

Process	“determine	next	waypoint”

Process	 two—“determine	 next	 waypoint”—accesses	 the	 data	 store	 and
retrieves	 data	 concerning	 the	 current	 route.	 The	 process	 determines	 the	 next
waypoint	and	outputs	this	information.

Process	“recalculate	route”

Process	three—“recalculate	route”—plots	a	new	course	to	the	destination.	In
order	to	do	so,	it	gathers	traffic	information	from	the	source	“traffic	information
server”	 and,	 potentially,	 information	 about	 the	 current	 location.	 The	 newly
calculated	course	is	stored	in	the	data	store	“route	data”.

Figure	6-11	Data	flow	diagram	in	the	notation	suggested	by	DeMarco

6.6.2	Models	of	the	Functional	Perspective	and	Control	Flow

In	 data	 flow	 diagrams,	 it	 cannot	 be	 seen	 which	 conditions	 trigger	 which
processes.	Data	flow	diagrams	merely	depict	data	dependencies	of	the	processes
in	 a	 system	 and	 document	 necessary	 input	 and	 generated	 output	 data.
Approaches	 used	 in	 structured	 system	 analysis,	 however,	 often	 offer
complementary	 behavioral	 descriptions	 and	 control	 flow	 descriptions.	 This	 is
achieved	 either	 by	 using	 distinct	 documentation	 forms,	 such	 as	 mini-
specifications	in	structured	analysis,	or	by	means	of	implicit	language	extensions
of	data	 flow	models.	Language	extensions	offer	 the	ability	 to	model	additional
aspects,	e.g.,	 the	control	 flow	between	functions,	as	done	 in	SA/RT	[Ward	and
Mellor	1985,	Hatley	and	Pirbhai	1988].

6.6.3	UML	Activity	Diagrams

UML	activity	diagrams	are	well	suited	to	model	action	sequences	[OMG	2007].
Along	with	activity	diagrams	in	UML,	event-driven	process	chains	(EPC)	can	be
used	 to	 model	 sequences	 of	 activities	 [Keller	 et	 al.	 1992],	 especially	 in
information	system	development.	UML	activity	diagrams	depict	the	control	flow
between	 activities	 or	 actions.	 In	 case	 of	 a	 sequential	 progression	 of	 actions,	 a
subsequent	action	is	executed	once	every	precedent	action	terminates.	Figure	6-

12	 shows	 important	 modeling	 elements	 of	 activity	 diagrams	 in	 UML	 [OMG
2007].

Figure	6-12	Modeling	elements	of	activity	diagrams	of	the	UML

Action	nodes

Activity	diagrams	are	 control	 flow	graphs	 that	 consist	 of	 action	nodes	 and	 the
control	 flow	 between	 these	 action	 nodes	 (i.e.,	 the	 arrows	 in	 the	 control	 flow
graph	depicting	 transitions).	Action	nodes	execute	an	action.	The	start	and	end
nodes	in	activity	diagrams	have	defined	semantics.	The	start	node	represents	an
event	that	 initiates	the	execution	of	the	activity	diagram.	End	nodes	are	special
nodes	that	represent	the	termination	of	the	activity	diagram.

Control	flows,	object	flows,	responsibilities

Depicting	 alternative	 control	 flows	 in	 activity	 diagrams	 can	 be	 achieved
through	 the	 use	 of	 decision	 nodes.	 At	 decision	 nodes,	 conditions	 that	 trigger
alternative	control	 flows	are	annotated.	 In	addition,	 synchronization	bars	allow
for	 concurrent	 execution	 of	 control	 flows.	A	 special	 type	 of	 control	 flows	 are
object	 flows.	 By	 making	 use	 of	 activity	 partitions	 (swimlanes),	 different
activities	can	be	documented	as	the	responsibility	of	specific	actors.

Sequence	Modeling	using	UML	Activity	Diagrams

The	 activity	 diagram	 in	 figure	 6-13	 documents	 the	 process	 “navigate	 to
destination”.	 Input	 and	output	data	 can	be	documented	by	modeling	additional

object	 flows	 along	 the	 edges.	 The	 data	 and	 object	 flows	 are	 special	 types	 of
control	 flows	 of	 the	 activity	 diagram.	 Every	 action	 is	 executed	 if	 and	 only	 if
previous	 actions	 have	 been	 carried	 out	 and	 all	 incoming	 object	 flows	 are
available.	 The	 action	 diagram	 in	 figure	 6-13	 also	 shows	 object	 flows	 that	 are
documented	in	addition	to	the	actions	and	control	flows.

Figure	6-13	Activity	diagram	in	UML	notation

The	activity	diagram	above	documents	 the	sequence	of	actions	necessary	 for	a
navigation	 device	 to	 calculate	 a	 route.	 The	model	 documents	 that	 initially	 the
desired	destination	is	asked	for	and	that	the	current	location	is	determined.	These
two	 actions	 happen	 concurrently,	 independent	 from	 one	 another.	 The	 input
destination	(object	flow:	object	 	destination;	state	 	input)	and	the	determined
location	(object	flow:	object	 	location;	state	 	determined)	are	relayed.	If	the
driver	 has	 opted	 to	 automatically	 circumvent	 traffic	 congestions,	 the	 system
queries	for	up-to-date	traffic	information.	Once	the	updated	traffic	information	is

received	or	if	 the	driver	has	not	selected	to	circumvent	traffic	jams,	 the	system
calculates	a	route	to	the	destination.	The	calculated	route	is	output	to	the	driver.

Modeling	sequences	of	a	use	case

Activity	 diagrams	 are	 well	 suited	 to	 document	 the	 relationships	 and
execution	 conditions	 of	 main,	 alternative,	 and	 exception	 scenarios.	 Decision
nodes	 represent	 branches	 in	 the	 control	 flow	 between	 the	 main	 scenario	 and
alternative	and	exception	scenarios.

Control	Flow	of	Main	and	Alternative	Scenarios

The	 activity	 diagram	 in	 figure	 6-14	 shows	 the	 control	 flow	 of	 the	 main	 and
alternative	scenario	of	 the	use	case	“navigate	 to	destination”	as	documented	 in
table	 6-2.	 Alternative	 control	 flow	 branches	 begin	 at	 the	 decision	 nodes	 that
document	the	respective	alternative-and	exception	scenarios	to	a	particular	main
scenario.

Main	and	alternative	scenarios

The	 activity	 diagram	 shows	 that	 initially,	 the	 action	 “start	 navigation”	 is
executed.	 After	 that,	 the	 actions	 “input	 destination”	 and	 “determine	 GPS
coordinates”	are	executed	concurrently	and	independent	from	one	another.	Once
both	 actions	 have	 been	 executed,	 the	 system	 asks	 the	 driver	 if	 he	 wishes	 the
route	to	be	calculated	dynamically	(action	“ask	for	desire	to	calculate	the	route
dynamically”).	 If	 the	 driver	 does	 not	 request	 the	 route	 to	 be	 calculated
dynamically	 (selection	 “do	 not	 avoid	 congestions”),	 no	 specific	 action	 is
executed	 (see	 table	 6-1	 	main	 scenario).	 If	 the	 driver	 selects	 dynamic	 route
calculation	 (selection	 “avoid	 congestions”),	 updated	 traffic	 information	 is
determined	 (action	 “query	 traffic	 info”,	 see	 table	 6-1	 	 alternative	 scenario).
After	 that,	 the	 route	 is	 calculated	 (action	 “calculate	 route”)	 and	 output	 to	 the
driver	(action	“output	route”).

Figure	6-14	Documentation	of	the	control	flow	of	scenarios	using	UML	activity	diagrams

6.7	Requirements	Modeling	in	the	Behavioral	Perspective

Finite-state	automata

To	 model	 the	 dynamic	 behavior	 of	 a	 system,	 modeling	 approaches	 based	 on
automata	 theory	 are	 typically	 employed.	 The	 definition	 of	 a	 finite-state
automaton	comprises	a	set	of	states	and	a	set	of	transitions	that,	dependent	on	the
current	state	of	the	automaton,	are	performed	given	some	event.

Mealy	and	Moore	automata

In	 the	 scope	 of	 system	 modeling,	 extensions	 of	 finite-state	 automata	 are
frequently	used	that	are	based	on	the	concepts	of	so-called	Mealy	[Mealy	1955]
and	Moore	automata	[Moore	1956],	respectively.	In	Mealy	automata,	the	output
of	an	automaton	depends	on	the	current	state	of	the	automaton	as	well	as	on	the
input.	In	contrast,	in	Moore	automata,	the	output	merely	depends	on	the	current
state.

6.7.1	Statecharts

Statecharts	=	state	machines	+	hierarchization	+	conditions	+
concurrency

Due	to	challenges	that	arise	when	using	finite	state	automata	in	practice	(such	as
missing	support	for	abstraction),	the	automata	concept	has	been	developed	into	a
technique	 of	 modeling	 the	 reactive	 behavior	 of	 a	 system.	 A	 widely	 applied
technique	 to	 model	 the	 behavior	 of	 a	 system	 is	 the	 use	 of	 statecharts	 [Harel
1987].	Statecharts	are	a	 type	of	automata	 that	 is	based	on	 finite-state	automata
but	are	extended	 to	support	hierarchization	of	states	 to	document	conditions	of
state	 transitions	 and	 to	 model	 concurrent	 behavior.	 Figure	 6-15	 shows	 the
modeling	 elements	 of	 statecharts	 in	 the	 notation	 suggested	 by	 Harel	 [Harel
1987].

Figure	6-15	Modeling	elements	of	statecharts

State

A	state	defines	a	period	of	time	in	which	the	system	shows	a	specific	behavior
and	waits	for	a	particular	event	to	occur	in	order	to	perform	a	defined	transition.

Transition	with	condition	and	activity

A	 transition	 is	 triggered	 by	 a	 particular	 event	 once	 it	 occurs	 in	 a	 specific

state.	A	transition	describes	the	change	from	one	state	to	the	next.	The	change	of
states	can	additionally	be	dependent	on	some	condition.	The	system	can	perform
particular	activities	if	it	is	in	a	particular	state	(typical	for	Moore	automata)	or	if
it	 performs	 a	 transition	 to	 another	 state	 (typical	 for	 Mealy	 automata).	 These
activities	 can	 be	 directed	 toward	 the	 system	 itself	 or	 the	 environment	 of	 the
system.

Hierarchization	and	abstraction

Statecharts	 allow	 for	 the	 hierarchical	 refinement	 of	 states	 that	 in	 turn
represent	automata.	The	initial	state	is	referred	to	as	super	state	and	is	defined	by
a	 number	 of	 refining	 states.	 Hierarchization	 allows	 abstracting	 from	 the
irrelevant	details	of	 a	 state	by—depending	on	 the	purpose	of	 the	model—only
regarding	and/or	modeling	 the	 super	 state	 rather	 than	 the	entire	 sub	automaton
that	defines	the	super	state.	The	detailed	behavior	of	the	system	can,	if	necessary,
be	refined	by	defining	the	respective	partial	automata.

Concurrency

Along	with	 hierarchical	 decomposition	 of	 a	 state	 into	 refining	 automata,	 a
state	 can	 be	 decomposed	 into	 several	 concurrent	 automata.	 The	 concurrent
automata	 can	 be	 synchronized	 by	 means	 of	 transition	 conditions	 (e.g.,	 “if
automaton	A	is	in	state	4”).	Figure	6-16	shows	a	behavior	model	for	a	navigation
device	of	a	vehicle	by	means	of	a	statechart.	The	navigation	device	is	initially	in
the	state	“navigation	device	inactive”.

Figure	6-16	Simplified	statechart	of	a	vehicular	navigation	device

Transition	into	super	state

By	turning	on	the	navigation	device	(event:	“navigation	device	activated”),	 the
system	transitions	into	the	super	state	“navigation	device	active”	(more	precisely,
the	 system	 transitions	 into	 the	 initial	 state	 “no	GPS	 signal”	 of	 the	 super	 state
“navigation	device	active”).	The	super	state	“navigation	device	active”	is	refined
by	a	partial	automaton	that	consists	of	two	states.	For	example,	if	a	GPS	signal	is
received	 in	 the	 state	 “navigation	 device	 active:	 no	 GPS	 signal”8.	 the	 system
transitions	 into	 the	 state	 “navigation	 device	 active:	 GPS	 signal”	 and	 issues	 a
notification.	 If	 the	 device	 is	 deactivated	 while	 in	 the	 state	 “navigation	 device
active”	(event:	“navigation	device	deactivated”),	 the	system	transitions	 into	 the
state	“navigation	device	inactive”.

6.7.2	UML	State	Diagrams

Modeling	reactive	behavior	of	a	system	using	UML

In	order	to	model	reactive	system	behavior,	Unified	Modeling	Language	(UML)
[OMG	 2007]	 offers	 so-called	 state	 machines	 that	 are	 essentially	 based	 on
statecharts.	Figure	6-17	 shows	 the	most	 important	modeling	elements	of	UML
state	diagrams.	The	notation	of	 the	modeling	elements	of	UML	state	diagrams
has	 largely	 been	 adopted	 from	 statecharts.	 However,	 UML	 2	 extends	 the
modeling	elements	of	statecharts,	e.g.,	by	the	ability	to	define	explicit	entry	and
exit	points	of	hierarchical	states	[OMG	2007].

Figure	6-17	Modeling	elements	of	state	machines	as	defined	by	the	UML	2

States	and	transitions

Just	as	in	statecharts,	a	state	defines	a	period	of	time	in	which	a	system	shows	a
particular	 behavior	 and	 waits	 for	 a	 particular	 event	 to	 occur.	 A	 transition	 is

triggered	by	an	event	 that	occurs	 in	a	particular	state	and	describes	 the	change
from	 one	 state	 to	 the	 next.	 A	 transition	 can	 be	 dependent	 on	 a	 condition.	 In
addition,	the	system	can	perform	actions	that	are	directed	toward	the	system	or
its	environment.

Hierarchization	and	concurrency

Depending	on	the	purpose	of	the	model,	state	machines	allow	hierarchically
combining	states	into	super	states,	thereby	abstracting	from	the	potentially	very
complex	behavior	of	these	states.	Aside	from	hierarchically	decomposing	states
by	means	of	partial	automata,	a	state	can	be	decomposed	into	several	concurrent
state	 machines.	 Just	 as	 in	 statecharts,	 synchronization	 of	 concurrent	 state
machines	can	be	achieved	using	conditions.

Encapsulation	of	internal	states	using	entry	and	exit	points

UML	2	defines	entry	points	and	exit	points	as	an	extension	of	statecharts	that
allow	 for	 additional	 hierarchization	 of	 states.	 An	 exit	 point	 is	 an	 externally
visible	pseudo-state	that	is	immediately	associated	with	an	internal	state.	An	exit
point	is	an	externally	visible	pseudo-state	that	has	its	origin	in	an	internal	state.
A	 super	 state	within	 a	 state	machine	 can	 have	 arbitrarily	many	 entry	 and	 exit
points	that	can	be	identified	by	a	name	[Rumbaugh	et	al.	2005].

Figure	 6-18	 shows	 a	 state	 diagram	 of	 UML	 that	 possesses	 two	 explicitly
defined	entry	points	 (“enter	new	destination”	and	“last	destination”)	as	well	as
one	 exit	 point	 (“navigation	 successful”)	 along	 with	 the	 modeling	 elements
introduced	in	section	6.7.1.

Figure	6-18	State	diagram	in	UML	2	notation

The	state	diagram	in	figure	6-18	documents	the	reactive	behavior	of	a	navigation
device.	Initially,	the	system	is	in	the	state	“device	ready”.	By	selecting	“navigate
to	.	.	.”,	the	system	changes	into	the	super	state	“navigation	active”	and,	within
the	super	state,	 into	the	sub	state	“enter	destination	data”	by	making	use	of	the
entry	point	“enter	new	destination”.	Alternatively,	the	system	changes	from	the
state	“device	ready”	into	the	internal	state	“route	calculation”	of	the	super	state
“navigation	active”	by	making	use	of	the	entry	point	“last	destination”	as	soon	as
the	 event	 “navigate	 to	 last	 destination”	occurs.	Once	 the	 system	 is	 in	 the	 state
“navigation	active:	 enter	destination	data”,	 the	 system	 transitions	 into	 the	 state
“navigation	active:	route	calculation”	if	the	condition	that	the	destination	data	is
valid	has	been	met.

Once	 the	 route	 is	 calculated	 in	 the	 state	 “navigation	 active:	 route
calculation”,	 the	 system	 transitions	 into	 the	 state	 “navigation	 active:	 output
route”.	 If	 a	 deviation	 from	 the	 route	 is	 detected	 (event:	 “deviation	 from
calculated	route”)	in	the	state	“navigation	active:	route	calculation”,	the	driver	is
notified	(activity:	“notify	driver”).	From	the	state	“navigation	active”,	the	system
transitions	 into	 the	 state	 “device	 ready”	 once	 the	 event	 “cancel”	 occurs.	 If	 the
system	is	in	the	state	“navigation	active:	route	calculation”	and	the	destination	is
reached,	 the	 system	 exits	 the	 super	 state	 “navigation	 active”	 via	 the	 exit	 point
“navigation	successful”	to	transition	into	the	state	“device	ready”.

6.8	Summary

Along	with	using	natural	language	to	document	requirements,	requirements	can
be	 documented	 by	means	 of	models.	 Typically,	 natural	 language	 requirements
and	 requirements	 models	 are	 frequently	 employed	 in	 conjunction	 so	 that	 the
advantages	of	both	forms	of	documentation	can	be	exploited.

Model-based	 documentation	 of	 requirements	 has,	 among	 other	 things,	 the
advantage	 that	 graphical	 (imagelike)	 descriptions	 of	 circumstances	 can	 be
understood	 faster	 and	 better	 than	 natural-language	 descriptions.	 Among	 the
models	 that	 are	 frequently	 used	 in	 requirements	 engineering	 are	 goal	 models
(e.g.,	in	the	form	of	AND/OR	trees)	and	use	case	diagrams	as	well	as	conceptual
models	to	document	requirements	from	three	perspectives:	data,	functional,	and
behavioral.	 For	 each	 of	 these	 three	 perspectives,	 there	 are	 suitable	 conceptual
modeling	 languages	 that	 provide	 purpose-specific	 means	 to	 document	 the

information	depicted	in	each	respective	perspective.

4.	More	precisely,	there	is	an	entity	that	is	an	instance	of	the	entity	type	“passenger”	that	possesses	a	unique
identity	and	has	the	attribute	value	“John	Locke”	for	the	attribute	“name”.

5.	More	precisely,	 there	 is	an	entity	 that	 is	an	 instance	of	 the	entity	 type	“flight”	 that	possesses	a	unique
identity	and	has	the	attribute	value	“OA	815”	for	the	attribute	“flight	number”.

6.	A	comprehensive	overview	of	the	different	modelling	elements	of	the	UML	can	be	found	e.g.,	in	[OMG
2007].

7.	In	the	structured	analysis,	the	flow	of	data,	information,	documents,	or	material	is	considered	a	data	flow.
8.	For	unique	identification,	a	state	that	is	part	of	a	super	state	is	referenced	by	“super	state:	state”.	The	state

“no	GPS	 signal”	 in	 the	 super	 state	 “navigation	 device	 active”	 is	 therefore	 referenced	 as	 “navigation
device	active:	no	GPS	signal”.

7	Requirements	Validation	and
Negotiation

Validation	 and	negotiation	during	 requirements	 engineering	 is	meant	 to	 ensure
that	 the	documented	requirements	meet	the	predetermined	quality	criteria,	such
as	 correctness	 and	 agreement	 (see	 section	 4.6).	 The	 introduced	 principles	 and
techniques	 can	 be	 used	 to	 validate	 and	 negotiate	 individual	 requirements	 or
entire	requirements	documents.

7.1	Fundamentals	of	Requirements	Validation

During	 the	 requirements	 engineering	 activity,	 it	 is	 necessary	 to	 review	 the
quality	 of	 the	 requirements	 developed.	 Among	 others,	 the	 requirements	 are
presented	 to	 the	 stakeholders	with	 the	 goal	 to	 identify	 deviations	 between	 the
requirements	defined	and	the	stakeholders’	actual	wishes	and	needs.

Approving	requirements

During	 requirements	 validation,	 the	 decision	 of	 whether	 a	 requirement
possesses	the	necessary	level	of	quality	is	made	(see	chapter	4)	and	whether	the
requirement	can	be	approved	to	be	used	for	further	development	activities	(such
as	 design,	 implementation,	 and	 testing).	 This	 decision	 should	 be	made	 on	 the
basis	of	predefined	acceptance	criteria.

Goal	of	validation

The	 goal	 of	 requirements	 validation	 is	 therefore	 to	 discover	 errors	 in	 the
documented	 requirements.	 Typical	 examples	 of	 errors	 in	 requirements	 are

ambiguity,	incompleteness,	and	contradictions	(see	section	7.3).

Error	proliferation

Requirements	 documents	 are	 reference	 documents	 for	 all	 further
development	 activities.	 Therefore,	 errors	 negatively	 affect	 all	 further
development	activities.	A	requirements	error	that	is	discovered	when	the	system
is	already	deployed	and	operating	requires	all	artifacts	affected	by	the	error	to	be
revised,	 such	 as	 source	 code,	 test	 artifacts,	 and	 architectural	 descriptions.
Correcting	 errors	 in	 requirements	 once	 the	 system	 is	 in	 operation	 therefore
entails	significant	costs.

Legal	risks

A	 contract	 between	 client	 and	 contractor	 is	 often	 based	 on	 requirements
documents.	Critical	 errors	 in	 requirements	 can	 lead	 to	 the	 fact	 that	 contractual
agreements	cannot	be	met,	e.g.,	scope	of	supply	and	services,	expected	quality,
or	completion	deadlines.

7.2	Fundamentals	of	Requirements	Negotiation

Contradictory	requirements	cause	conflicts.

If	 there	 is	 no	 consent	 among	 the	 stakeholders	 regarding	 the	 requirements	 and
thus	 the	 requirements	 cannot	 be	 implemented	 collectively	 in	 the	 system,	 a
conflict	 arises	 between	 the	 contradictory	 requirements	 as	 well	 as	 between	 the
stakeholders	 that	 demand	 contradictory	 requirements.	 For	 example,	 one
stakeholder	could	demand	the	system	to	shut	down	in	case	of	a	failure,	whereas
another	stakeholder	could	require	the	system	to	restart.

Risks	and	opportunities	of	conflicts

The	 acceptance	 of	 a	 system	 is	 threatened	 by	 unresolved	 conflicts	 because
unresolved	conflicts	cause	the	requirements	of	at	least	one	group	of	stakeholders
to	not	be	implemented.	In	the	worst	case,	a	conflict	causes	stakeholder	support	to
cease,	 causing	 the	 development	 project	 to	 fail	 (cf.	 [Easterbrook	 1994]).	 Other
than	 posing	 risks,	 conflicts	 can	 also	 be	 an	 opportunity	 for	 requirements

engineering	 because	 conflicts	 between	 stakeholders	 require	 a	 solution	 that	 can
potentially	help	discover	new	ideas	for	development	and	can	illustrate	different
options	 (cf.	 [Gause	 and	 Weinberg	 1989]).	 Therefore,	 treating	 and	 resolving
conflicts	openly	during	requirements	engineering	can	increase	acceptance.

Goal	of	requirements	negotiation

The	goal	of	negotiation	is	to	gain	a	common	and	agreed-upon	understanding
of	 the	 requirements	 of	 the	 system	 to	 be	 developed	 among	 all	 relevant
stakeholders.

Reducing	costs	and	risks	in	late	phases

Requirements	 validation	 and	 negotiation	 is	 an	 activity	 that	 must	 be
performed	 (to	 a	 varying	 degree	 of	 intensity)	 throughout	 the	 entirety	 of
requirements	 engineering.	 The	 validation	 and	 negotiation	 of	 requirements
therefore	 causes	 additional	 effort	 and	 therefore	 additional	 costs.	 However,	 the
advantages	 gained	 by	 performing	 requirements	 validation	 and	 negotiation	 as
described	 in	 the	 previous	 sections	 (reduction	 of	 overall	 cost,	 increase	 in
acceptance,	supporting	creativity	and	innovations)	is	usually	significantly	higher
than	the	costs	that	arise	due	to	the	increased	effort.

7.3	Quality	Aspects	of	Requirements

A	 major	 aim	 of	 using	 quality	 criteria	 (e.g.,	 completeness,	 understandability,
agreement)	 in	 requirements	 validation	 is	 to	 be	 able	 to	 check	 requirements
systematically	(see	section	1.1.2).	In	order	to	assure	an	objective	and	consistent
validation,	it	is	necessary	that	each	quality	criterion	is	concretized	and	refined.	In
correspondence	with	 the	overall	goals	of	 the	requirements	engineering	process,
the	validation	is	carried	out	with	the	following	goals:

Content:	Have	all	relevant	requirements	been	elicited	and	documented	with
the	appropriate	level	of	detail?
Documentation:	 Are	 all	 requirements	 documented	 with	 respect	 to	 the
predetermined	guidelines	for	documentation	and	specification?
Agreement:	Do	all	stakeholders	concur	with	 the	documented	requirements
and	have	all	known	conflicts	been	resolved?

Three	quality	aspects

Each	of	 the	 three	goals	 implies	an	individual	approach	that	focuses	on	specific
aspects	of	the	quality	of	the	requirements.	Therefore,	the	following	three	quality
aspects	have	been	defined:

Quality	aspect	“content”
Quality	aspect	“documentation”
Quality	aspect	“agreement”

A	requirement	should	be	approved	for	further	development	activities	only	if	all
three	 quality	 aspects	 have	 been	 checked.	 The	 quality	 aspects	 are	 described	 in
detail	in	the	following	sections	and	made	concrete	through	different	fine-grained
quality	criteria	(with	no	claim	of	completeness).

7.3.1	Quality	Aspect	“Content”

The	quality	aspect	“content”	refers	to	the	validation	of	requirements	with	respect
to	errors	in	the	content.	Errors	in	requirements	with	regard	to	content	negatively
influence	the	subsequent	development	activities	and	cause	these	activities	to	be
based	upon	erroneous	information.

Test	criteria	of	the	quality	aspect	“content”

Errors	 in	 requirements	 with	 regard	 to	 content	 are	 present	 when	 specific
quality	criteria	for	requirements	(see	section	4.6)	or	for	requirements	documents
(see	section	4.5)	are	violated.	The	validation	of	requirements	with	regard	to	the
quality	 aspect	 “content”	 is	 successful	 once	 requirements	 validation	 has	 been
applied	to	the	following	error	 types	and	no	significant	shortcomings	have	been
detected:

Completeness	(set	of	all	requirements):	Have	all	relevant	requirements	for
the	system	to	be	developed	(for	the	next	system	release)	been	documented?
Completeness	(individual	requirements):	Does	each	requirement	contain	all
necessary	information?
Traceability:	Have	 all	 relevant	 traceability	 relations	been	defined	 (e.g.,	 to
relevant	requirements	sources)?

Correctness/adequacy:	 Do	 the	 requirements	 accurately	 reflect	 the	 wishes
and	needs	of	the	stakeholders?
Consistency:	 Is	 it	 possible	 to	 implement	 all	 defined	 requirements	 for	 the
system	to	be	developed	jointly?	Are	there	no	contradictions?
No	premature	design	decisions:	Are	there	any	forestalled	design	decisions
present	in	the	requirements	not	induced	by	constraints	(e.g.,	constraints	that
specifiy	a	specific	client-server	architecture	to	be	used)?
Verifiability:	Is	it	possible	to	define	acceptance	and	test	criteria	based	on	the
requirements?	Have	the	criteria	been	defined?
Necessity:	Does	every	requirement	contribute	to	the	fulfillment	of	the	goals
defined?

7.3.2	Quality	Aspect	“Documentation”

The	 quality	 aspect	 “documentation”	 deals	 with	 checking	 requirements	 with
respect	 to	 flaws	 in	 their	 documentation	 or	 violations	 of	 the	 documentation
guidelines	 that	 are	 in	 effect,	 such	 as	 understandability	 of	 the	 documentation
formats	 and	 the	 consideration	 of	 organizational	 or	 project-specific	 guidelines
regarding	 the	 documentation	 of	 requirements	 but	 also	 the	 structure	 of	 the
requirements	documents.

Implications	of	the	violation	of	documentation	guidelines

Ignoring	 the	documentation	guidelines	can,	among	other	 things,	 lead	 to	 the
following	risks:

Impairment	 of	 development	 activities:	 It	 may	 be	 impossible	 to	 carry	 out
development	activities	that	are	based	upon	a	specific	documentation	format.
Misunderstandings:	 Requirements	 may	 not	 be	 understandable	 or	 may	 be
misunderstood	by	the	people	that	need	to	comprehend	them.	As	a	result,	the
requirement	may	be	unusable.
Incompleteness:	 Relevant	 information	 is	 not	 documented	 in	 the
requirements.
Overlooking	 requirements:	 If	 requirements	 are	 not	 documented	 at	 the
position	 that	 they	 are	 supposed	 to	 in	 the	 requirements	 document,	 these
requirements	may	be	overlooked	in	subsequent	activities.

Test	criteria	of	the	quality	aspect	“documentation”

Requirements	 validation	 with	 regard	 to	 the	 quality	 aspect	 “documentation”	 is
successful	when	requirements	validation	has	been	applied	to	the	following	error
types	and	no	significant	shortcomings	have	been	detected:

Four	test	criteria	of	the	quality	aspect	“documentation”

Conformity	to	documentation	format	and	to	documentation	structures:	Are
the	requirements	documented	in	the	predetermined	documentation	format?
For	 instance,	 has	 a	 specific	 requirements	 template	 or	 a	 specific	modeling
language	been	used	to	document	the	requirements?	Has	the	structure	of	the
requirements	 document	 been	 maintained?	 For	 instance,	 have	 all
requirements	 been	 documented	 at	 the	 position	 defined	 by	 the	 document
structure?
Understandability:	Can	all	documented	requirements	be	understood	in	 the
context	given?	For	instance,	have	all	terms	used	been	defined	in	a	glossary
(see	section	4.7)?
Unambiguity:	Does	 the	documentation	of	 the	 requirements	allow	 for	only
one	 interpretation	 or	 are	 multiple	 different	 interpretations	 possible?	 For
instance,	does	a	text-based	requirement	not	possess	any	kind	of	ambiguity?
Conformity	to	documentation	rules:	Have	the	predetermined	documentation
rules	and	documentation	guidelines	been	met?	For	instance,	has	the	syntax
of	the	modeling	language	been	used	properly?

7.3.3	Quality	Aspect	“Agreement”

The	 quality	 aspect	 “agreement”	 deals	with	 checking	 requirements	 for	 flaws	 in
the	agreement	of	requirements	between	stakeholders.

Last	opportunity	for	changes

During	 the	 course	 of	 requirements	 engineering,	 stakeholders	 gain	 novel
knowledge	about	the	system	to	be	developed.	Due	to	this	additional	knowledge,
the	 opinion	 of	 the	 stakeholders	 regarding	 a	 requirement	 that	 has	 already	 been
agreed	upon	can	change.	During	requirements	validation,	stakeholders	have	the
opportunity	 to	requests	changes	without	 impairing	the	subsequent	development

activities.
Requirements	 validation	 with	 regard	 to	 the	 quality	 aspect	 “agreement”	 is

successful	when	requirements	validation	has	been	applied	to	the	following	error
types	and	no	significant	shortcomings	have	been	detected:

Three	test	criteria	of	the	quality	aspect	“agreement”

Agreed:	Is	every	requirement	agreed	upon	with	all	relevant	stakeholders?
Agreed	after	changes:	 Is	 every	 requirement	 agreed	upon	with	 all	 relevant
stakeholders	after	it	has	been	changed?
Conflicts	 resolved:	 Have	 all	 known	 conflicts	 with	 regard	 to	 the
requirements	been	resolved?

7.4	Principles	of	Requirements	Validation

Considering	the	following	six	principles	of	requirements	validation	increases	the
quality	of	the	validation	results:

Principle	1:	Involvement	of	the	correct	stakeholders
Principle	2:	Separating	the	identification	and	the	correction	of	errors
Principle	3:	Validation	from	different	views
Principle	4:	Adequate	change	of	documentation	type
Principle	5:	Construction	of	development	artifacts
Principle	6:	Repeated	validation

The	individual	principles	are	explained	in	the	following	sections.

7.4.1	Principle	1:	Involvement	of	the	Correct	Stakeholders

The	choice	of	stakeholders	for	requirements	validation	depends	on	the	goals	of
the	validation	as	well	as	the	requirements	that	are	to	be	audited.

When	assembling	the	auditing	team,	at	least	the	following	two	aspects	ought
to	be	considered.

Independence	of	the	auditor

Generally,	 it	 should	be	avoided	 that	 the	author	of	a	 requirement	 is	also	 the
person	 to	 validate	 it.	 The	 author	will	make	 use	 of	 his	 or	 her	 prior	 knowledge
when	reading	or	reviewing	the	requirement.	This	prior	knowledge	can	negatively
influence	the	identification	of	errors	because	potential	erroneous	passages	of	the
requirements	 documentation	 or	 the	 requirements	 are	 implicitly	 and
subconsciously	amended	by	the	author’s	own	knowledge	and	can	thus	easily	be
overlooked.

Internal	vs.	external	auditors

Suitable	 auditors	 can	 be	 identified	 within	 or	 outside	 of	 the	 developing
organization.	Internal	audits	are	performed	by	stakeholders	that	are	members	of
the	developing	organization	and	can	be	used	 to	validate	 intermediate	 results	or
preliminary	 requirements.	 An	 internal	 validation	 is	 easy	 to	 coordinate	 and
organize	because	the	stakeholders	are	available	from	within	the	organization.	An
external	audit	requires	a	higher	degree	of	effort	because	it	identifies	auditors	and
(potentially)	 hires	 them	 for	 payment.	 In	 addition,	 external	 auditors	 have	 to
become	familiar	with	the	context	of	the	system	to	be	developed.	Due	to	the	high
effort,	an	external	audit	should	be	performed	only	on	requirements	that	exhibit	a
high	level	of	quality.

7.4.2	Principle	2:	Separating	the	Identification	and	the	Correction
of	Errors

Basic	principle

Separation	between	identifying	errors	and	actually	fixing	them	has	proven	itself
in	the	domain	of	software	quality	assurance.	The	same	principle	can	be	applied
to	 requirements	 validation.	 During	 validation,	 the	 flaws	 identified	 are
documented	 immediately.	After	 that,	 each	 flaw	 identified	 is	 double-checked	 to
determine	whether	it	really	is	an	error.

Concentrating	on	error	identification

Separating	 error	 identification	 and	 error	 correction	 allows	 auditors	 to
concentrate	on	 the	 identification.	Measures	 to	correct	 the	errors	are	 taken	only
after	identification	measures	have	been	completed.	This	has	the	advantages	that

the	 resources	 available	 for	 error	 correction	 can	 be	 used	 purposefully,	 that
premature	 error	 identification	 does	 not	 create	 additional	 errors,	 and	 that	 no
alleged	error	is	fixed	that	did	not	need	fixing	because	further	investigation	of	the
error	may	 result	 in	 the	 fact	 that	 an	alleged	error	 is	 in	 fact	no	error	at	 all.	That
way,	 potentially	 present	 significant	 errors	 are	 less	 likely	 to	 be	 overlooked
because	 the	 auditor	 is	 concentrating	 on	 fixing	 a	 previous	 error	 instead	 of
identifying	new	ones.

7.4.3	Principle	3:	Validation	from	Different	Views

Perspective-based	validation

Validating	requirements	from	different	views	is	another	principle	that	has	proven
itself	 in	practice.	 In	 this	principle,	 requirements	are	validated	and	agreed	upon
from	 different	 perspectives	 (e.g.,	 by	 different	 people,	 see	 section	 7.5.4).
Comparable	 methods	 are	 used	 in	 other	 disciplines	 as	 well.	 For	 instance,	 in	 a
legal	 trial,	 circumstances	 are	 often	 reported	 from	 the	 perspective	 of	 different
people	so	that	a	sound	overall	picture	can	be	gained.

7.4.4	Principle	4:	Adequate	Change	of	Documentation	Type

Strengths	and	weaknesses	of	documentation	types

Changing	 the	 documentation	 type	 during	 requirements	 validation	 uses	 the
strengths	 of	 one	 documentation	 type	 to	 balance	 out	 the	 weaknesses	 of	 other
documentation	 types.	 For	 instance,	 good	 understandability	 and	 expressiveness
are	 strengths	 of	 natural	 language	 texts.	 However,	 their	 weakness	 is	 potential
ambiguity	and	difficulty	 in	expressing	complex	circumstances.	Graphic	models
are	 able	 to	 depict	 complex	 circumstances	 rather	 well,	 but	 the	 individual
modeling	constructs	are	restricted	in	expressiveness.

Simpler	identification	of	errors

Transcribing	 a	 requirement	 that	 is	 already	 documented	 in	 another	 form	 of
documentation	 simplifies	 finding	 errors.	 For	 instance,	 ambiguities	 in	 natural
language	requirements	can	be	identified	much	easier	by	transcribing	them	into	a

model-based	representation.

7.4.5	Principle	5:	Construction	of	Development	Artifacts

Suitability	of	the	requirements	for	design,	test,	and	manual	creation

Constructing	development	artifacts	aims	at	validating	the	quality	of	requirements
that	 are	meant	 to	 be	 the	 basis	 of	 creating	 design	 artifacts,	 test	 artifacts,	 or	 the
user	manual.	During	 the	 course	 of	 the	 validation,	 the	 activities	 usually	 carried
out	 during	 subsequent	 phases	 to	 construct	 respective	 development	 artifacts	 are
carried	out	for	small	samples.	For	instance,	the	auditor	intensively	deals	with	a
requirement	 by	 creating	 a	 test	 case.	 This	 way,	 errors	 (e.g.,	 ambiguity)	 can	 be
identified	in	the	requirement.	This	kind	of	validation,	however,	demands	a	lot	of
resources	because	subsequent	development	activities	must	be	executed	at	least	in
part.

7.4.6	Principle	6:	Repeated	Validation

Validation	occurs	at	a	distinct	point	in	time	during	the	development	process	and
relies	 on	 the	 level	 of	 knowledge	 of	 the	 auditors	 at	 that	 point	 in	 time.	 During
requirements	engineering,	the	stakeholders	gain	additional	knowledge	about	the
planned	 system.	 Therefore,	 a	 positive	 validation	 of	 requirements	 does	 not
guarantee	that	requirements	are	still	valid	at	a	later	point	in	time.	Requirements
validation	should	occur	multiple	times	in	the	following	cases	(among	others):

Lots	of	innovative	ideas	and	technology	used	in	the	system
Significant	gain	of	knowledge	during	requirements	engineering
Long-lasting	projects
Very	early	requirements	validation
Unknown	domain
Requirements	that	are	to	be	reused

7.5	Requirements	Validation	Techniques

In	the	following	sections,	techniques	for	requirements	validation	are	introduced.
Often,	manual	validation	techniques,	which	are	also	known	by	the	general	term
review,	are	used	for	requirements	validation.	Three	major	 types	of	reviews	can
be	differentiated:

Commenting
Inspections
Walk-throughs

Along	with	 reviews,	 the	 following	 three	 techniques	have	proven	 themselves	 to
be	useful	for	requirements	validation:

Perspective-based	reading
Validation	through	prototypes
Using	checklists	for	validation

In	 the	 following,	 these	 six	 techniques	 are	 described.	 Prior	 to	 applying	 any	 of
these	 techniques,	 preparatory	 steps	 need	 to	 be	 taken	 as	 needed,	 such	 as
identifying	and	inviting	the	right	stakeholders	or	organizing	suitable	rooms	and
supplies.

7.5.1	Commenting

Individual	validation	of	requirements

During	 commenting,	 the	 author	 hands	 his	 or	 her	 requirements	 over	 to	 another
person	(e.g.,	a	co-worker).	The	goal	is	to	receive	the	co-worker’s	expert	opinion
with	 regard	 to	 the	 quality	 of	 a	 requirement.	 The	 co-worker	 reviews	 the
requirement	with	the	goal	to	identify	issues	that	impair	requirement	quality	(e.g.,
ambiguity	or	errors)	with	respect	to	predetermined	quality	criteria.	The	identified
flaws	are	marked	in	the	requirements	document	and	briefly	explained.

7.5.2	Inspection

Typical	phases	of	an	inspection

Inspections	of	software	or	any	other	type	of	product	are	done	to	systematically
check	development	artifacts	for	errors	by	applying	a	strict	process	[Laitenberger
and	DeBaud	2000].

An	 inspection	 is	 typically	 separated	 into	various	phases	 [Gilb	 and	Graham
1993]:	 planning,	 overview,	 defect	 detection,	 defect	 correction,	 follow-up,	 and
reflection.	For	 requirements	validation,	 the	planning,	overview,	error	detection,
and	 error	 collection	 phases	 are	 relevant	 (see	 principle	 2,	 separating	 the
identification	and	correction	of	errors	in	section	7.4.2).	Individual	preparation	is
an	 obligatory	 part	 of	 inspections.	 An	 inspection	 session	 usually	 serves	 the
purpose	of	collecting	and	evaluating	error	indications.	Occasionally,	performing
dedicated	inspection	sessions	is	omitted	when	performing	inspections.

Planning

Among	other	things,	the	goal	of	the	inspection,	the	work	results	that	are	to	be
inspected,	 and	 the	 roles	 and	 participants	 are	 determined	 during	 the	 planning
phase.

Overview

In	the	overview	phase,	the	author	explains	the	requirements	to	be	inspected
to	 all	 team	 members	 so	 that	 there	 is	 a	 common	 understanding	 about	 the
requirement	among	all	inspectors.

Error	detection

In	 the	 error	 detection	 phase,	 the	 inspectors	 search	 through	 the	 requirement
for	 errors.	 Error	 detection	 can	 be	 performed	 individually	 by	 each	 inspector	 or
collaboratively	 in	 a	 team.	 Individual	 inspection	 has	 the	 advantage	 that	 each
inspector	 can	 concentrate	 on	 the	 requirements.	 On	 the	 other	 hand,	 team
inspections	 have	 the	 advantage	 that	 communication	 between	 the	 inspectors
creates	 synergy	 effects	 during	 error	 detection.	 During	 the	 course	 of	 error
detection,	any	errors	that	are	found	are	purposively	documented.

Error	collection	and	consolidation

In	the	error	collection	phase,	all	identified	errors	are	collected,	consolidated,
and	documented.	During	consolidation,	errors	that	have	been	identified	multiple

times	or	errors	that	aren’t	really	errors	are	identified.	The	latter	can	be	the	case
if,	 for	 instance,	an	 inspector	makes	wrong	assumptions	about	a	 requirement	or
interprets	 some	 constraint	 the	 wrong	 way.	 Along	 with	 consolidation,	 the
identified	 errors	 and	 correcting	 measures	 are	 documented	 in	 an	 error	 list.
Inspections	are	also	known	as	technical	reviews.

Roles	during	inspection

For	an	inspection	to	be	performed,	the	following	roles	must	be	staffed	with
suitable	personnel:

Organizer:	The	organizer	plans	and	supervises	the	inspection	process.
Moderator:	 The	 moderator	 leads	 the	 session	 and	 ensures	 that	 the
predetermined	 inspection	 process	 is	 followed.	 It	 is	 advisable	 to	 select	 a
neutral	 moderator	 because	 the	 moderator	 could	 potentially	 balance	 out
opposing	opinions	of	authors	and	inspectors.
Author:	 The	 author	 explains	 the	 requirements	 that	 he	 created	 to	 the
inspectors	 in	 the	overview	phase	and	later	on	is	responsible	for	correcting
the	errors	identified.
Reader:	 The	 reader	 introduces	 the	 requirements	 to	 be	 inspected
successively	and	guides	the	inspectors	through	them.	The	role	of	the	reader
should	 be	 given	 to	 a	 neutral	 stakeholder	 so	 that	 the	 inspectors	 can	 center
their	 attention	 on	 the	 requirements	 instead	 of	 on	 the	 interpretation	 of	 the
author.	Often,	the	moderator	is	also	the	reader.
Inspectors:	 The	 inspectors	 are	 responsible	 for	 finding	 errors	 and
communicating	their	findings	to	the	other	members	of	the	project	team.
Minute-taker:	This	person	takes	minutes	of	the	results	of	the	inspection.

7.5.3	Walk-Through

Lightweight	inspection

In	 requirements	 validation,	 a	 walk-through	 is	 a	 lightweight	 version	 of	 an
inspection.	A	walk-through	is	less	strict	than	an	inspection	and	the	involved	roles
are	differentiated	to	a	lesser	degree.	During	a	walk-through,	at	least	the	roles	of
the	 reviewer	 (comparable	 to	 the	 inspector),	 author,	 and	 minute-taker,	 and
potentially	the	moderator,	are	staffed.

Discussion	of	the	identified	flaws	in	quality	during	a	group	session

The	 goal	 of	 a	 walk-through	 of	 requirements	 is	 to	 identify	 quality	 flaws
within	 requirements	 by	 means	 of	 a	 shared	 process	 and	 to	 gain	 a	 shared
understanding	of	 the	 requirements	between	all	 the	people	 involved.	To	prepare
for	 a	 walk-through,	 the	 requirements	 to	 be	 validated	 are	 handed	 out	 to	 all
participants	 and	 inspected.	 During	 the	 walk-through	 session,	 the	 participants
discuss	 the	 requirements	 to	 be	 validated	 step-by-step,	 under	 guidance	 of	 the
moderator/reader.	Usually,	the	author	of	a	requirement	is	the	one	who	introduces
the	 requirement	 to	 all	 other	 participants.	 This	 way,	 the	 authors	 have	 the
opportunity	 to	 give	 additional	 information	 to	 the	 group	 along	 with	 the	 actual
requirement	 (e.g.,	 alternative	 requirements,	 decisions,	 and	 rationale	 for
decisions).	 A	 minute-taker	 documents	 the	 flaws	 in	 quality	 that	 have	 been
identified	during	the	session.

7.5.4	Perspective-Based	Reading

Check	requirements	from	a	defined	perspective.

Perspective-based	 reading	 is	 a	 technique	 for	 requirements	 validation	 in	which
requirements	are	checked	by	adopting	different	perspectives	[Basili	et	al.	1996].
Typically,	perspective-based	reading	is	applied	in	conjunction	with	other	review
techniques	 (e.g.,	 during	 inspections	 or	 walk-throughs).	 Focusing	 on	 particular
perspectives	 when	 reading	 a	 document	 verifiably	 leads	 to	 improved	 results
during	requirements	validation.	Possible	perspectives	for	validation,	for	instance,
emerge	from	the	different	addressees	of	a	requirement	[Shull	et	al.	2000]:

User/customer	 perspective:	 The	 requirements	 are	 checked	 from	 the
perspective	of	the	customer	or	the	user	to	determine	whether	they	describe
the	desired	functions	and	qualities	of	the	system.
Software	 architect	 perspective:	 The	 requirements	 are	 checked	 from	 the
perspective	 of	 the	 software	 architect	 to	 ascertain	 if	 they	 contain	 all
necessary	 information	 for	 architectural	 design	 (e.g.,	 if	 all	 relevant
performance	properties	have	been	described).
Tester	perspective:	The	 requirements	 are	 checked	 from	 the	perspective	of
the	 tester	 to	 establish	 whether	 they	 contain	 the	 information	 necessary	 to

derive	test	cases	from	the	requirements.

Perspective	quality	aspects

The	 three	 quality	 aspects	 (see	 section	 7.3)	 also	 describe	 three	 possible
perspectives	for	requirements	validation:

Content	perspective:	With	 the	content	perspective,	 the	auditor	verifies	 the
content	 of	 requirements	 and	 focuses	 on	 the	 quality	 of	 the	 content	 of	 the
documented	requirement.
Documentation	 perspective:	 With	 the	 documentation	 perspective,	 the
auditor	 ensures	 that	 all	 documentation	 guidelines	 for	 requirements	 and
requirements	documents	have	been	met.
Agreement	perspective:	With	the	agreement	perspective,	the	auditor	checks
if	 all	 stakeholders	 agree	 on	 a	 requirement,	 i.e.,	 if	 the	 requirements	 are
agreed	upon	and	conflicts	have	been	resolved.

In	addition,	 further	perspectives	 that	emerge	from	the	 individual	context	of	 the
development	project	can	be	created	as	need	be.

Define	validation	directives	for	each	perspective.

During	perspective-based	validation,	 each	auditor	 is	 assigned	a	perspective
(at	the	proper	point	in	time)	from	which	she	reads	and	validates	the	requirement.
For	each	perspective	defined,	detailed	instructions	for	performing	the	validation
should	be	laid	down	because	the	auditor	might	not	be	familiar	with	all	relevant
details	 of	 her	 assigned	 perspective.	 It	 is	 advisable	 to	 associate	 questions	 with
each	 validation	 instruction	 that	 must	 be	 answered	 by	 the	 content	 of	 the
requirements	or	by	the	auditor	after	she	has	read	the	requirement,	respectively.	In
addition,	 validation	 instructions	 can	 be	 amended	 with	 a	 checklist	 that
summarizes	the	most	important	content	aspects	that	ought	to	be	addressed	by	a
requirement	with	regard	to	the	appropriate	perspective.

Follow-up

During	 the	 course	 of	 the	 follow-up	 to	 a	 perspective-based	 reading	 session,
the	results	of	the	chosen	perspective	are	analyzed	and	consolidated.	On	the	one
hand,	 the	 results	 of	 the	 perspective-based	 reading	 contain	 answers	 to	 the

predefined	questions,	and	on	the	other	hand,	open	issues	that	the	auditors	noticed
while	reading	may	be	present.	The	consolidation	can	be	done	as	a	group	effort,
similarly	to	a	review.

Support	of	other	techniques

Perspective-based	 reading	 can	 be	 both	 an	 independent	 technique	 for
requirements	validation	and	a	support	technique	for	other	validation	techniques,
such	 as	 inspections	 or	 reviews	 of	 requirements	 documents	 by	 means	 of
perspective-based	reading.

7.5.5	Validation	through	Prototypes

Requirements	 validation	 by	means	 of	 prototypes	 allows	 auditors	 to	 experience
the	 requirements	 and	 to	 try	 them	 out.	 Experiencing	 requirements	 directly
through	prototypes	[Jones	1998]	is	 the	most	effective	method	to	identify	errors
in	requirements.	Stakeholders	can	 try	out	 the	prototype	and	compare	 their	own
idea	of	how	the	system	ought	to	be	implemented	with	the	prototype	at	hand	and
thereby	find	discrepancies	between	their	ideas	and	the	current	implementation.

Evolutionary	vs.	throw-away	prototypes

Depending	on	the	further	use	of	the	prototype,	one	can	distinguish	between
throw-away	 prototypes	 and	 evolutionary	 prototypes	 [Sommerville	 2007].
Throw-away	 prototypes	 are	 not	 maintained	 once	 they	 have	 been	 used.
Evolutionary	prototypes	are	developed	with	the	goal	to	be	developed	further	and
improved	 in	 later	 steps.	 In	 contrast	 to	 throw-away	 prototypes,	 implementation
plays	 a	 much	 more	 significant	 role	 here.	 Therefore,	 the	 effort	 to	 create
evolutionary	prototypes	is	much	higher.

Selection	of	relevant	requirements

Before	 a	 prototype	 can	 be	 implemented,	 the	 requirements	 that	 shall	 be
validated	through	the	prototype	must	be	selected.	The	set	of	requirements	to	be
validated	 is	 limited	by	development	resources	(e.g.,	 time,	money,	etc.)	 that	can
be	 allocated	 for	 validation.	 For	 example,	 a	 selection	 criterion	 can	 be	 the
criticality	of	a	requirement.

Preparation	of	the	validation

The	following	preparations	have	to	be	made	in	order	to	validate	requirements
by	means	of	prototypes:

Manual/instructions:	The	users	of	the	prototype	must	be	supplied	with	the
necessary	information	so	that	they	can	use	or	apply	the	prototype.	This	can
be	done	by	means	of	a	manual	or	by	means	of	proper	instruction.
Validation	 scenarios:	 Validation	 scenarios	 that	 the	 users	 of	 the	 prototype
can	perform	with	 the	prototype	 should	be	prepared.	A	validation	 scenario
defines,	for	example,	all	relevant	data	sets	or	user	interactions.
Checklist	with	validation	criteria:	For	 requirements	validation,	a	checklist
of	 validation	 criteria	 should	 be	 created	 according	 to	 which	 the	 prototype
(and	by	proxy,	the	requirements)	can	be	validated.

Performing	the	validation

The	 auditor	 should	 validate	 the	 prototype	 without	 being	 influenced;	 i.e.,	 the
auditor	 should	 execute	 the	 validation	 scenarios	 independently	 and	 by	 herself.
This	ensures	that	the	validation	results	are	created	without	bias.

During	 validation,	 the	 auditors	 can	 and	 ought	 to	 execute	 alternative	 and
deviant	scenarios	and	should	use	the	prototype	exploratively	and	experimentally
once	 the	 required	 validation	 scenarios	 have	 been	 covered.	 For	 example,	 error
cases	 that	have	 remained	hidden	until	 then	can	be	 identified.	For	experimental
validation	of	the	prototype,	the	auditor	needs	to	know	the	scope	of	the	prototype,
i.e.,	 the	set	of	 requirements	 that	have	been	considered	when	 the	prototype	was
created.	Without	knowledge	of	the	implemented	requirements,	an	auditor	cannot
decide	whether	an	identified	error	can	be	traced	back	to	a	missing	requirement	or
if	the	requirement	has	been	consciously	omitted	in	the	prototype.

Documentation	of	the	validation	results

Requirements	 validation	 through	 prototypes	 therefore	 permits	 two	 types	 of
result	documentation:

Protocol	of	the	auditor:	The	auditor	documents	the	results	and	experiences
made	 during	 the	 validation	 of	 the	 prototype,	 e.g.,	 by	means	 of	 validation
scenarios	as	well	as	a	checklist	that	he	has	been	supplied	with.

Observation	protocol:	The	auditor	can	be	observed	by	a	second	person.	The
second	 person	 creates	 a	 so-called	 observation	 protocol.	This	 protocol	 can
disclose	 additional	 important	 symptoms	 for	 errors	 in	 requirements.	 For
example,	 when	 the	 auditor	 hesitates	 at	 a	 certain	 step	 in	 the	 validation
scenario	while	using	the	prototype	and	the	observer	documents	this,	it	may
be	 an	 indication	 for	 missing	 apparentness	 and	 as	 such	 an	 indication	 for
impaired	understandability	of	the	prototype.	Under	certain	circumstances,	it
may	be	advisable	 to	 record	 the	validation	on	video	because	 the	validation
situation	 can	 be	 analyzed	 in	 detail	 during	 the	 follow-up.	 For	 example,	 a
video	 recording	 can	 show	 the	 realization	 of	 requirements	 pertaining	 to
anthropometric	properties	(such	as	ergonomics)	or	intuitive	use	and	can	be
investigated	in	detail.

Analysis

The	 results	of	 the	validation	are	 analyzed	after	validation	 is	 complete.	Change
suggestions	 for	 the	 requirements	are	consolidated.	 If	 significant	changes	 to	 the
requirements	 are	 necessary,	 it	 may	 be	 advisable	 to	 revise	 the	 prototype	 and
validate	anew.

7.5.6	Using	Checklists	for	Validation

A	 checklist	 comprises	 a	 set	 of	 questions	 and/or	 statements	 about	 a	 certain
circumstance.	 Checklists	 can	 be	 applied	 whenever	 many	 aspects	 must	 be
considered	in	a	complex	environment	and	no	aspect	must	be	omitted.	A	checklist
for	 requirements	validation	 contains	questions	 that	 ease	 the	detection	of	 errors
[Boehm	1984].	Using	checklists	for	requirements	validation	is	very	common	in
practice.	 Checklists	 can	 be	 used	 in	 all	 previously	 introduced	 techniques	 for
requirements	validation.

Creating	checklists

Before	a	checklist	can	be	used,	every	single	question	or	 statement	must	be
defined.	 The	 sources	 for	 questions	 and	 statements	 in	 the	 following	 list	 can	 be
used	to	create	checklists	to	support	requirements	validation:

The	three	quality	aspects	of	requirements	(see	section	7.3)

Principles	of	requirements	validation	(see	section	7.4)
Quality	criteria	for	requirements	documents	(see	section	4.5)
Quality	criteria	for	individual	requirements	(see	section	4.6)
Experiences	of	the	auditors	from	prior	projects
Error	statistics	[Chernak	1996]

Improving	checklists

Checklists	 are	 not	 necessarily	 complete.	 When	 using	 a	 checklist,	 one	 should
always	 look	 for	 opportunities	 to	 improve	 the	 checklist	 for	 future	 use.	 For
example,	if	a	question	was	forgotten,	the	checklist	should	be	amended	to	contain
the	extra	question.	Ambiguous	questions	or	questions	that	are	not	understandable
must	 be	marked	 and	 revised.	Outdated	 or	 no	 longer	 valid	 questions	 should	 be
removed.

Checklists	as	a	guideline

Checklists	can	support	 requirements	validation	 in	different	ways.	They	can
serve	 as	 a	 guideline	 for	 the	 auditor,	who	 can	 follow	 the	 checklists	 at	 her	 own
discretion	(e.g.,	during	a	review).

Checklists	as	a	means	of	structuring

The	checklist	can	define	a	list	of	questions	that	must	be	strictly	adhered	to.
These	questions	must	be	answered	by	the	auditor	to	validate	the	requirements.	In
this	 case,	 the	 checklist	 serves	 as	 a	 measure	 to	 approach	 the	 validation	 in	 a
structured	manner.	For	example,	 the	checklist	may	detail	 the	exact	process	that
the	auditors	are	asked	to	apply,	which	guarantees	that	every	auditor	validates	the
requirements	in	the	same	way.	This	makes	the	results	more	comparable.

Hybrid	 forms	 of	 checklist	 application	 are	 also	 possible.	 For	 example,	 a
checklist	can	contain	obligatory	questions	for	perspective-based	reading	and	can
contain	suggestions	that	the	auditor	may	or	may	not	follow.

Successfully	applying	checklists

Applying	checklists	for	requirements	validation	successfully	depends	on	the
manageability	and	complexity	of	the	checklist.	A	large	amount	of	questions	can

make	 it	more	difficult	 to	use	 the	checklist	because	 the	auditor	does	not	have	a
steady	 overview	 of	 the	 questions	 and	 is	 thus	 forced	 to	 consult	 the	 checklist
frequently.	It	is	therefore	advisable	to	design	the	checklist	to	not	be	longer	than	a
single	page	[Gilb	and	Graham	1993].	In	addition,	questions	that	are	formulated
altogether	 too	 generically	 or	 abstractly	 can	 make	 it	 more	 difficult	 to	 use	 the
checklist.	 For	 example,	 the	 question	 “Is	 the	 requirement	 formulated
appropriately?”	can	lead	to	a	multitude	of	different	answers,	depending	on	what
the	 auditor	 considers	 an	 appropriately	 formulated	 requirement.	 The	 questions
therefore	ought	to	be	as	precise	as	possible.

7.6	Requirements	Negotiation

To	 negotiate	 the	 requirements	 of	 a	 system	 to	 be	 developed,	 it	 is	 necessary	 to
identify	 conflicts	 and	 to	 resolve	 those	 conflicts.	 This	 is	 done	 by	 means	 of
systematic	 conflict	 management.	 The	 conflict	 management	 in	 requirements
engineering	comprises	the	following	four	tasks:

Four	tasks	of	conflict	management

Conflict	identification
Conflict	analysis
Conflict	resolution
Documentation	of	the	conflict	resolution

These	four	tasks	are	explained	in	the	following	sections.

7.6.1	Conflict	Identification

Conflicts	can	arise	during	all	 requirements	engineering	activities.	For	example,
different	stakeholders	can	utter	contradicting	requirements	during	elicitation.

Conflict	identification	in	all	requirements	engineering	activities

Conflicts	between	requirements	and	conflicts	between	stakeholders	are	often
not	obvious	due	to	different	reasons.	During	the	entire	requirements	engineering
process,	the	requirements	engineer	should	pay	attention	to	potential	conflicts	so

that	they	can	be	identified,	analyzed,	and	resolved	early	on.

7.6.2	Conflict	Analysis

Determining	the	conflict	type

During	 conflict	 analysis,	 the	 reason	 for	 an	 identified	 conflict	 must	 be
determined.	According	to	[Moore	2003],	different	types	of	conflicts	exist.

Data	conflict

A	 data	 conflict	 between	 two	 or	 more	 stakeholders	 is	 characterized	 by	 a
deficit	 of	 information,	 by	 false	 information,	 or	 by	 different	 interpretations	 of
some	 information.	 For	 example,	 take	 the	 following	 requirement:	 “R131:	 The
reaction	time	of	the	planned	system	shall	not	exceed	one	second”.	A	data	conflict
between	two	stakeholders	with	regard	to	this	requirement	can	arise	from	the	fact
that	one	stakeholder	considers	a	reaction	time	of	1	second	to	be	too	slow	while
another	stakeholder	does	not	believe	that	a	reaction	time	of	1	second	is	feasibly
implementable	(i.e.,	it	is	too	short).

Conflict	of	interest

A	conflict	of	 interest	between	 two	or	more	stakeholders	 is	characterized	by
subjectively	or	objectively	different	interests	or	goals	of	stakeholders.	A	conflict
of	 interest	between	two	or	more	stakeholders	can	arise,	 for	 instance,	when	one
stakeholder	 primarily	 focuses	 on	 keeping	 the	 costs	 of	 the	 planned	 system	 at	 a
minimum	while	another	stakeholder	primarily	desires	a	high	level	of	quality.	A
conflict	 of	 interest	 between	 these	 two	 stakeholders	 arises	 when	 the	 first
stakeholder	 rejects	 a	 requirement	 due	 to	 estimated	 costs	 and	 the	 second
stakeholder	insists	on	implementing	it	due	to	quality	reasons.

Conflict	of	value

A	 conflict	 of	 value	 is	 characterized	 by	 differing	 underlying	 values
stakeholders	 have	 regarding	 some	 circumstance	 (e.g.,	 cultural	 differences,
personal	 ideals).	 For	 instance,	 a	 conflict	 of	 value	 arises	when	 one	 stakeholder
favors	open	source	technologies	while	another	stakeholder	favors	closed	sources

technologies.

Relationship	conflict

A	 relationship	 conflict	 is	 characterized	 by	 strong	 emotions,	 stereotypical
relationship	 concepts,	 deficient	 communication,	 or	 negative	 interpersonal
behavior	 between	 stakeholders	 (e.g.,	 insults,	 disrespect).	 For	 instance,	 a
relationship	conflict	arises	when	two	stakeholders	of	equal	rank	or	position	(e.g.,
department	 leaders)	 reject	 each	 other’s	 requirements	 and	 try	 to	 distinguish
themselves	by	forcing	their	requirements	onto	the	project.

Structural	conflict

A	structural	conflict	is	characterized	by	unequal	levels	of	authority	or	power.
For	 instance,	 a	 structural	 conflict	 can	 arise	 between	 an	 employee	 and	 his
superior	 if	 the	 superior	 invariably	 rejects	 requirements	 that	 the	 employee	 has
defined	because	he	does	not	recognize	 the	employee’s	competence	 to	delineate
requirements.

Mixed	reasons	for	conflicts

Often,	 it	 is	 difficult	 to	 unambiguously	 classify	 emerging	 conflicts.	 For
example,	 a	 conflict	 can	 be	 a	 relationship	 conflict	 with	 clear	 structural
components.	Similarly,	a	conflict	of	interest	can	be	a	conflict	of	values	as	well.
Therefore,	 it	 is	 advisable	 to	 analyze	 an	 identified	 conflict	 with	 respect	 to	 all
types	so	that	all	possible	reasons	for	the	conflict	can	be	determined	and	suitable
resolution	strategies	can	be	selected.

7.6.3	Conflict	Resolution

Good	conflict	resolution	is	a	success	factor.

Conflict	 resolution	 is	 very	 important	 for	 requirements	 negotiation	 because	 the
strategy	 of	 conflict	 resolution	 has	 a	 big	 influence	 on	 the	 willingness	 of	 the
people	 involved	 (e.g.,	 customers,	 consultants,	 or	 developers)	 to	 continue
working	together.	For	example,	a	conflict	resolution	considered	unfair	by	at	least
one	party	of	the	conflict	can	lead	to	a	decreased	engagement	and	willingness	to

collaborate	in	the	project.	On	the	other	hand,	a	resolution	that	is	considered	fair
by	all	parties	can	increase	the	willingness	to	cooperate	because	this	signals	that
everyone’s	ideas	about	the	planned	system	are	being	considered.

Involvement	of	the	relevant	stakeholders

Independently	from	the	selected	resolution	strategy,	it	is	essential	to	involve
all	 relevant	 stakeholders.	 If	 not	 all	 relevant	 stakeholders	 are	 considered,	 some
opinions	 and	 viewpoints	will	 remain	 unconsidered.	 The	 conflict	will	 therefore
only	be	resolved	in	part	or	 incompletely.	 In	 the	following	paragraphs,	different
conflict	resolution	techniques	are	introduced.

Agreement

With	 the	 conflict	 resolution	 technique	 agreement,	 all	 conflict	 parties
negotiate	a	solution	to	the	conflict.	The	parties	exchange	information,	arguments,
and	opinions	and	try	to	convince	one	another	of	each	other’s	viewpoints	in	order
to	come	to	an	agreeable	solution.

Compromise

With	the	conflict	resolution	technique	compromise,	all	conflict	parties	try	to
find	a	compromise	between	alternative	solutions.	In	contrast	to	an	agreement,	a
compromise	 consists	 of	 an	 amalgamation	 of	 different	 parts	 of	 the	 alternative
solutions.	 Also,	 a	 compromise	 can	 mean	 that	 all	 alternative	 solutions	 as
proposed	 thus	 far	 are	 discarded	 and	 entirely	 new	 solutions	 are	 creatively
developed.

Voting

In	 the	 conflict	 resolution	 technique	 voting,	 all	 conflict	 parties	 vote	 on
solution	alternatives.	The	alternatives	that	are	up	for	voting	are	presented	to	all
relevant	stakeholders.	Each	stakeholder	casts	her	vote	for	an	alternative	and	the
alternative	with	the	most	votes	is	accepted	as	the	resolution	for	the	conflict.

Definition	of	variants

In	 the	 conflict	 resolution	 technique	 definition	 of	 variants,	 the	 system	 is

developed	in	a	way	that	permits	 the	definition	of	variants	by	deriving	variants,
by	 selecting	 parameters	 that	 define	 system	 variants,	 or	 by	 selecting	 variable
system	properties.	This	way,	the	system	can	satisfy	the	different	interests	of	the
stakeholders.

Overruling

In	 the	 conflict	 resolution	 technique	 overruling,	 a	 conflict	 is	 resolved	 by
means	 of	 the	 hierarchical	 organization.	 This	 means	 that	 a	 conflict	 party	 with
higher	organizational	rank	or	position	wins	the	conflict	by	overruling	objections
of	 organizationally	 lower	 parties.	 If	 both	 parties	 have	 the	 same	 organizational
rank,	 the	 conflict	 is	 resolved	 by	 a	 superior	 stakeholder	 or	 some	 third-party
decider.	This	 conflict	 resolution	 technique	 is	 only	 advisable	 if	 other	 resolution
techniques	 have	 failed	 (e.g.,	 no	 compromise	 could	 be	 found)	 or	 are	 not
applicable	due	to	limitations	of	resources	(e.g.,	time).

Consider-all-facts

In	the	conflict	resolution	technique	consider-all-facts	(CAF),	all	 influencing
factors	of	a	conflict	are	being	investigated	so	that	as	much	information	about	the
conflict	can	be	collected	as	possible.	This	information	is	used	during	resolution.
By	prioritizing	 the	 influence	factors,	 the	relevance	 is	determined.	Based	on	 the
results	of	this	technique,	the	plus-minus-interesting	conflict	resolution	technique
can	be	applied.

Plus-minus-interesting

In	the	conflict	resolution	technique	plus-minus-interesting	(PMI),	all	positive
and	 negative	 repercussions	 of	 a	 solution	 alternative	 are	 investigated	 so	 that
positive	and	negative	repercussions	can	be	evaluated.	Positive	repercussions	are
placed	 in	 the	 category	 “plus”	 and	 negative	 repercussions	 are	 placed	 in	 the
category	 “minus”.	 Repercussions	 that	 are	 neither	 positive	 nor	 negative	 are
placed	in	the	category	“interesting”.	Repercussions	in	the	category	“interesting”
cannot	 be	 evaluated	 yet	 and	must	 be	 investigated	 further	 to	 determine	 if	 their
influence	is	positive	or	negative.

Decision	matrix

In	 the	 conflict	 resolution	 technique	decision	matrix,	 a	 table	 is	 created	 that
contains	solution	alternatives	in	the	columns	and	all	relevant	decision	criteria	in
the	 rows.	 The	 decision	 criteria	 can	 be	 identified	 by	 means	 of	 the	 technique
“consider-all-facts”.	For	each	combination	of	criterion	and	solution	alternative,
an	 assessment	 is	 made,	 for	 instance	 by	 means	 of	 a	 pointscale	 ranging	 from
irrelevant	(0	points)	to	relevant	(10	points).	Table	7-1	shows	a	decision	matrix.

Table	7-1	Decision	matrix

In	 order	 to	 find	 a	 solution,	 the	 sums	 of	 the	 columns	 are	 calculated;	 i.e.,	 the
assessments	 of	 the	 criteria	 of	 each	 solution	 alternative	 are	 summed	 up.	 The
solution	 alternative	 with	 the	 highest	 score	 is	 accepted	 as	 the	 decision.	 In	 the
example	shown	in	table	7-1,	this	would	be	solution	alternative	1.

7.6.4	Documentation	of	the	Conflict	Resolution

Risks	of	missing	conflict	documentation

Conflicts	cannot	be	avoided	during	requirements	engineering.	A	resolution	to	a
conflict	 must	 always	 be	 traceably	 documented.	 If	 a	 conflict	 resolution	 is	 not
properly	 documented,	 the	 following	 threats	 (among	 others)	 to	 the	 project	may
arise:

Handling	 conflicts	 repeatedly:	 A	 certain	 conflict	 can	 arise	 a	 second	 time
during	 the	 requirements	 engineering	 process.	 Without	 proper
documentation	of	the	conflict	resolution,	the	conflict	must	be	analyzed	and
resolved	 anew.	 This	 causes	 additional	 effort	 and	 can	 potentially	 lead	 to
additional	conflicts	or	abrogate	previous	resolutions.
Inappropriate	 conflict	 resolution:	 During	 the	 requirements	 engineering
process,	the	resolution	of	a	conflict	can	turn	out	to	be	wrong	or	unsuitable.

In	 this	case,	 the	conflict	must	be	 investigated	and	 resolved	anew.	Without
proper	documentation,	relevant	information	that	has	been	considered	during
the	 initial	 analysis	 and	 resolution	can	be	overlooked	and	 the	new	conflict
resolution	can	once	again	lead	to	false	results.

In	both	 cases,	 proper	documentation	of	 the	 conflict	 and	 its	 resolution	 supports
the	 requirements	 engineering	 process	 and	 ensures	 that	 relevant	 information
already	known	can	be	considered.

7.7	Summary

The	quality	of	the	elicited	and	documented	requirements	must	be	assured	during
requirements	engineering	so	that	it	can	be	guaranteed	that	the	requirements	meet
the	desires	and	ideas	of	the	stakeholders	adequately.	Therefore,	it	is	necessary	to
validate	 the	 requirements	 with	 regard	 to	 the	 quality	 of	 their	 content,	 their
documentation,	 and	 their	 agreement	with	 respect	 to	 the	 different	 stakeholders.
There	are	different	techniques	that	can	be	selected	and	purposively	combined	for
requirements	validation,	depending	on	the	project	peculiarities	and	project	goals.
Among	 the	 most	 common	 validation	 techniques	 for	 requirements	 are	 the
different	 types	 of	 requirements	 reviews	 (e.g.,	 commenting,	 inspection,	 walk-
through)	as	well	as	perspective-based	reading	and	validation	through	prototypes
and	checklists.

For	 requirements	 negotiation,	 it	 is	 necessary	 to	 identify	 conflicts	 between
stakeholders,	analyze	them,	and	resolve	them	in	a	suitable	manner.	A	systematic
conflict	management	supports	analysis	and	resolution	of	 the	conflicts	 that	have
been	identified	over	the	course	of	requirements	validation	or	other	requirements
engineering	activities.

8	Requirements	Management

Requirements	 management	 comprises	 purposefully	 assigning	 attributes	 to
requirements,	 defining	 views	 on	 requirements,	 prioritizing	 requirements,	 and
tracing	requirements	as	well	as	versioning	requirements,	managing	requirements
changes,	 and	measuring	 requirements.	Requirements	management	 includes	 the
management	 of	 individual	 requirements	 as	 well	 as	 the	 management	 of
requirements	documents.

8.1	Assigning	Attributes	to	Requirements

Information	 about	 the	 requirements	must	 be	 documented	 throughout	 the	 entire
life	 cycle	 of	 a	 system.	 This	 includes,	 for	 example,	 unique	 identifiers	 of	 a
requirement,	 the	 name	 of	 the	 requirement,	 the	 author	 and	 sources	 of	 the
requirement,	and	the	person	responsible	for	the	requirement.

8.1.1	Attributes	for	Natural	Language	Requirements	and	Models

To	document	 information	about	 requirements,	 it	has	proven	useful	 to	delineate
this	information	in	a	structured	manner:	as	attributes.	Attributes	of	a	requirement
are	defined	by	a	unique	name,	a	short	description	of	the	contents,	and	the	set	of
possible	values	that	can	be	assigned	to	the	attribute.

Template-based	assignment	of	attributes	to	requirements

The	 simplest	 way	 to	 define	 requirement	 attributes	 is	 by	 means	 of	 a	 table
structure	(template).	The	template	defines	the	relevant	information	that	is	 to	be
documented.	This	information,	i.e.,	the	defined	attributes	(attribute	types),	can	be

different	for	each	type	of	requirement.	For	example,	the	template	for	functional
requirements	 can	 be	 different	 from	 the	 template	 for	 quality	 requirements	with
respect	to	the	defined	attribute	types	and/or	the	allowed	attribute	values.

8.1.2	Attribute	Scheme

The	 set	 of	 all	 defined	 attributes	 for	 a	 class	 of	 requirements	 (e.g.,	 functional
requirements,	 quality	 requirements)	 is	 called	 an	 attribute	 scheme.	 Attribute
schemes	are	usually	tailored	to	meet	the	individual	project’s	needs.

Assignment	of	requirement	attributes

During	 the	 course	 of	 the	 project,	 the	 attributes	 of	 the	 requirements	 are
assigned	with	fitting	attribute	values.	Figure	8-1	shows	an	exemplary	assignment
of	attributes	for	a	requirement	including	the	attributes	“identifier”,	“name”,	and
“requirement	 description”	 as	well	 as	 attributes	 that	 allow	 for	 documenting	 the
stability	of	the	requirements	and	its	source	as	well	as	its	author.

Figure	8-1	Example	of	requirement	attribute	assignment

The	requirement	that	is	documented	on	the	basis	of	the	simple	template	shown	in
figure	 8-1	 has	 the	 code	 “Req-10”	 as	 its	 unique	 identifier.	 It	 bears	 the	 name
“Dynamic	 Traffic	 Congestion	 Avoidance”	 and	 a	 description	 that	 specifies	 the
subject	 of	 this	 requirement.	 The	 stability	 of	 this	 requirement	 is	 classified	 as
“fixed”,	 “J.	 Locke”	 is	 the	 person	 responsible	 for	 this	 requirement,	 and	 the
requirement	stems	from	the	source	“Product	Management”.	“B.	Wagner”	is	the

author.
The	 reader	 of	 the	 requirement	 (e.g.,	 the	 contractor,	 product	 manager,

developer,	 project	 manager)	 has	 a	 significant	 advantage	 when	 template-based
documentation	is	used,	namely	that	information	of	the	same	type	can	always	be
found	 in	 the	 same	 position	 (e.g.,	 the	 requirement	 stability	 is	 always	 in	 the
template	section	“stability”).	In	addition,	template-based	assignment	of	attributes
has	 the	 advantage	 for	 the	 requirements	 engineer	 that	 it	 is	 harder	 for	 her	 to
overlook	 important	 information	 and	 that	 this	 information,	 supported	 by	 the
structure	 of	 the	 template	 and	 the	 predetermined	 attribute	 values,	 can	 be
documented	purposefully	and	correctly.

8.1.3	Attribute	Types	of	Requirements

Frequently	used	attribute	types

The	various	standards	in	requirements	engineering	and	the	most	pertinent	 tools
for	requirements	documentation	and	management	often	offer	a	set	of	predefined
attributes.	 Table	 8-1	 lists	 attribute	 types	 that	 are	 frequently	 used	 in	 practice
during	requirements	management.

Table	8-1	Frequently	used	attribute	types

Additional	attribute	types	for	requirements

Along	 with	 the	 requirements	 attributes	 listed	 in	 table	 8-1,	 many	 additional
attribute	types	exist	to	document	important	information	of	a	requirement.	Table
8-2	shows	a	selection	of	additional	attribute	types	for	requirements.

Table	8-2	Additional	types	of	requirements	attribute

Project-specific	tailoring	of	the	attribute	scheme

The	attribute	types	suggested	are	the	basis	for	defining	an	attribute	scheme	in	the
development	 project.	 To	 define	 an	 attribute	 scheme,	 at	 least	 the	 following
specific	aspects	must	be	considered:

Specific	 properties	 of	 the	 project,	 e.g.,	 project	 size,	 local	 or	 distributed
development,	or	project	risk
Constraints	 of	 the	 organization,	 e.g.,	 organizational	 standards	 and
regulations
Properties	and	regulations	of	the	application	domain,	e.g.,	reference	models,

modeling	guidelines,	standards
Constraints	and	restrictions	of	 the	development	process,	e.g.,	 liability	 law,
process	standards

Definition	of	attributes	by	means	of	information	models

When	 employing	 tools	 for	 requirements	 management,	 defining	 the	 attribute
structure	 of	 requirements	 is	 often	 not	 done	 by	 means	 of	 tables,	 but	 is	 model
based,	by	means	of	information	models.	A	model-based	definition	of	an	attribute
scheme	determines	 the	attribute	 types	as	well	as	 limitations	 in	attribute	values,
similar	to	template-based	definitions.	In	addition,	model-based	attribute	scheme
definition	 allows	 for	 determining	 relations	 between	 attribute	 types	 of	 different
attribute	schemes.

Advantages	of	model-based	attributing

Along	 with	 the	 advantages	 of	 table-based	 definition,	 model-based
assignment	 of	 requirement	 attributes	 additionally	 allows	 consideration	 of
requirement	 dependencies	 when	 selectively	 accessing	 the	 requirements.	 This
aids	 in	 maintaining	 consistency	 in	 the	 attributes	 of	 the	 requirements.
Furthermore,	the	information	model	of	a	model-based	assignment	of	requirement
attributes	can	serve	as	the	foundation	for	the	definition	of	an	attribute	structure
to	be	used	in	a	requirements	management	tool.	(see	section	9.3).	Also,	templates
for	the	assignment	of	requirement	attributes	can	be	generated	on	the	basis	of	the
information	model.

8.2	Views	on	Requirements

Structuring	requirements	by	means	of	information	models	allows	for	generating
specific	 views	 on	 requirements.	 It	 can	 be	 seen	 in	 practice	 that	 the	 amount	 of
requirements	and	the	amount	of	dependencies	among	requirements	are	evermore
increasing.	In	order	to	keep	the	complexity	of	the	requirements	manageable	for
the	 project	 staff,	 it	 is	 necessary	 to	 selectively	 access	 and	 thereby	 filter	 the
requirements	depending	on	the	current	task.

Role-specific	definition	of	views

Views	 on	 requirements	 are	 often	 defined	 for	 different	 roles	 in	 the
development	process.	Examples	include	views	for	the	architect,	the	programmer,
the	project	manager,	and	the	tester.	It	is	common	to	define	multiple	views	for	a
role	in	order	to	support	 the	sub-activities	of	each	role.	One	particular	view	can
also	be	applied	to	multiple	roles.

8.2.1	Selective	Views	on	the	Requirements

A	view	contains	a	part	of	all	available	requirement	information.	A	view	can	do
the	following:

Select	particular	requirements;	i.e.,	not	every	requirement	is	contained	in	a
view.
Mask	 certain	 attributes	 of	 requirements;	 i.e.,	 not	 every	 attribute	 of	 a
requirement	is	contained	in	a	view.
Arbitrarily	combine	both	these	selection	principles;	i.e.,	only	a	subset	of	all
available	 requirements	 and	 only	 a	 subset	 of	 all	 available	 attributes	 are
contained	in	a	view.

Generating	selective	views

Figure	8-2	illustrates	the	generation	of	three	views,	represented	by	a	table	that	is
defined	on	the	basis	of	the	structure	of	the	attributes.	In	all	three	cases,	the	views
are	created	by	selecting	attribute	 types	as	well	as	by	determining	 the	attributes
that	 must	 be	 available.	 The	 definition	 of	 the	 first	 view	 (),	 for	 example,
determines	 that	 only	 those	 requirements	 are	 selected	 that	 “J.	 Locke”	 is
responsible	for	and	that	have	a	stability	of	“fixed”.	Of	all	selected	requirements,
only	 the	 attributes	 “identifier”,	 “name”,	 “description”,	 and	 “author”	 are	 being
considered.

Figure	8-2	Selective	views	on	the	requirements

8.2.2	Condensed	Views	on	the	Requirements

Along	 with	 selecting	 existing	 information	 from	 the	 requirements	 basis,	 views
can	contain	generated	or	condensed	data	that	is	not	immediately	contained	in	the
requirements.	 Views	 that	 contain	 only	 generated	 or	 condensed	 data	 are	 called
condensed	views.

Generating	condensed	views

Condensed	 views	 can	 be	 defined	 by	 aggregating	 the	 data	 contained	 in	 the
requirements	basis.	A	condensed	view	can,	for	example,	contain	information	on
the	percentage	of	requirements	that	stem	from	a	particular	source.

Combination	of	selecting	and	condensing

A	single	 view	may	 also	 consist	 of	 a	 combination	of	 generated,	 condensed,
and	selected	data.

Figure	8-3	Condensed	view	generated	from	a	requirements	basis

Figure	 8-3	 shows	 two	 condensed	 views	 of	 the	 requirements.	 The	 view
“Validation	 status	 of	 the	 Requirements	 Basis”	 ()	 groups	 requirements
according	to	the	current	status	of	validation	and	calculates	the	percentage	value
of	 the	 requirements	 with	 regard	 to	 the	 status	 “unvalidated”,	 “in	 validation”,
“validated”,	 “in	 correction”,	 and	 “erroneous”.	 The	 result	 is	 depicted	 as	 a	 bar
chart	in	the	figure	above.	In	view	(),	“Implementation	effort	by	Release”,	the
estimated	and	actual	effort	involved	with	the	implementation	of	the	requirements
of	a	particular	release	is	depicted.	In	order	to	calculate	this	aggregated	data,	the
requirements	 are	 grouped	 by	 their	 respective	 release	 and	 their	 implementation
effort	is	summed	up.	The	result	is	depicted	as	a	pie	chart	in	figure	8-3.

8.3	Prioritizing	Requirements

Requirements	 are	 prioritized	 during	 requirements	 engineering	 using	 different
prioritization	 criteria	 in	 all	 sub-activities.	 Requirements	 can	 be	 prioritized	 by
their	order	of	implementation,	for	example.	Due	to	the	different	prioritizations	in
the	various	sub-activities,	the	priority	of	a	requirement	can	be	determined	by	one
or	 more	 attributes	 (e.g.,	 priority	 of	 the	 contractor,	 priority	 due	 to	 urgency	 of
implementation).

8.3.1	Method	for	Requirements	Prioritization

Determining	goal	and	constraints	of	prioritization

In	order	to	prioritize	a	set	of	requirements,	a	goal	(i.e.,	purpose)	of	prioritization
must	 be	 defined	 first.	 In	 addition,	 the	 constraints	 of	 prioritization	 are
documented,	such	as	the	availability	of	different	stakeholders	and	groups	thereof
or	the	resources	available	for	prioritization.

Determining	prioritization	criteria

Depending	 on	 the	 goal	 of	 prioritization,	 the	 criterion	 for	 prioritizing	 the
requirements	 (or	 the	 combination	 of	 two	 or	 more	 criteria)	 is	 chosen.	 The
following	are	typical	examples	of	prioritization	criteria:

Cost	of	implementation
Risk
Damage	due	to	unsuccessful	implementation
Volatility
Importance
Duration	of	implementation	(i.e.,	how	long	it	takes	to	be	implemented)

Determining	Stakeholders

Depending	on	the	goal	of	prioritization	and	the	selected	prioritization	criteria,	it
is	 usually	 necessary	 to	 involve	 different	 stakeholders	 in	 the	 prioritization
process.	 By	 choosing	 appropriate	 stakeholders,	 it	 can	 be	 guaranteed	 that	 the
required	 expert	 knowledge	 is	 available	 during	 the	 prioritization	 process.	 The
stakeholders	 that	 ought	 to	 be	 involved	 are,	 depending	 on	 the	 goal	 and
prioritization	 criteria,	 developers,	 project	 managers,	 customers,	 or	 users,	 for
example.

Selection	of	artifacts

In	 addition,	 the	 requirements	 to	 be	 prioritized	 must	 be	 selected.	 When
selecting	requirements,	one	must	make	sure	that	the	selected	requirements	stem
from	the	same	level	of	abstraction.	Prioritizing	requirements	from	considerably

differing	levels	of	detail	will	 lead	to	inconsistent	and	erroneous	results	because
stakeholders	tend	to	assign	a	higher	priority	to	requirements	at	higher	levels	of
abstraction	than	to	more	refined	and	concrete	requirements.

Selection	of	prioritization	techniques

On	 the	 basis	 of	 the	 determined	 properties	 of	 the	 prioritization	 (e.g.,
constraints,	criteria	of	prioritization,	etc.),	a	suitable	prioritization	technique	or	a
combination	of	multiple	techniques	is	selected.

8.3.2	Techniques	for	Requirements	Prioritization

For	prioritization,	multiple	 techniques	exist.	The	 techniques	mainly	differ	with
regard	to	the	time	and	effort	needed	but	also	with	regard	to	the	suitability	of	the
different	prioritization	criteria	and	project	properties.

Ad	hoc	techniques	and	analytical	techniques

The	spectrum	of	prioritization	techniques	spans	from	simple,	single-criterion
classification	 to	 elaborate	 analytic	 prioritization	 approaches,	 such	 as	 AHP
(Analytical	Hierarchy	Process)	[Saaty	1980],	Cost-Value-Analysis	[Karlsson	and
Ryan	1997],	or	QFD	(Quality	Function	Deployment)	[Akao	1990].

In	many	projects,	simple	ad	hoc	prioritization	techniques	such	as	ranking	or
requirements	 classification	 are	 well	 suited.	 Especially	 with	 regard	 to	 the
resources	available,	using	ad	hoc	techniques	is	often	advisable.

If	 the	decision	process	 is	considered	 too	 incomprehensible,	or	 if	 the	 results
are	 too	 erroneous,	 analytical	 approaches	 for	 prioritization	 should	 be	 used
(additionally).	 In	 practice,	 multiple	 prioritization	 techniques	 are	 used	 in
combination	 in	 order	 to	 prioritize	 the	 requirements	 [Lehtola	 and	 Kauppinen
2006].

Ranking	and	Top-Ten	Technique

Two	well-established	techniques	for	requirement	prioritization	are,	for	example,
the	following	[Lauesen	2002]:

Ranking:	 In	 this	 technique,	 a	number	of	 selected	 stakeholders	 arrange	 the

requirements	to	be	prioritized	with	respect	to	a	specific	criterion.
Top-Ten	Technique:	In	this	technique,	the	n	most	important	requirements	for
a	defined	criterion	are	selected.	For	 these	requirements,	a	ranking	order	 is
determined	afterward.	This	 ranking	order	 represents	 the	 importance	of	 the
selected	requirements	with	regard	to	the	defined	criterion.

Single-Criterion	Classification

Another	 prioritization	 technique	 that	 is	 often	 used	 in	 practice	 is	 based	 on	 the
classification	of	requirements	with	respect	to	the	importance	of	the	realization	of
the	requirements	for	the	system’s	success.	This	type	of	prioritization	is	based	on
assigning	each	requirement	 to	one	of	 the	following	priority	classes	[IEEE	830-
1998]:

Mandatory:	 A	 mandatory	 requirement	 is	 a	 requirement	 that	 must	 be
implemented	at	all	costs	or	else	the	success	of	the	system	is	threatened.
Optional:	 An	 optional	 requirement	 is	 a	 requirement	 that	 does	 not
necessarily	need	to	be	implemented.	Neglecting	a	few	requirements	of	this
class	does	not	threaten	the	success	of	the	system.
Nice-to-have:	 Nice-to-have	 requirements	 are	 requirements	 that	 do	 not
influence	the	system’s	success	if	they	are	not	implemented.

In	practice,	differentiating	between	“optional”	and	“nice-to-have”	 requirements
can	 be	 very	 difficult.	 Therefore,	 requirements	 classification	 demands
classification	criteria	that	are	as	objectively	verifiable	as	possible.

Kano	Classification

The	Kano	approach	introduced	in	section	3.2	also	supports	the	prioritization	of
requirements.	 By	 making	 use	 of	 the	 Kano	 approach,	 one	 can	 classify	 and
prioritize	requirements	with	respect	to	their	acceptance	on	the	market.	In	order	to
do	so,	the	following	three	property	classes	(see	also	figure	3-1)	are	classified:

The	three	properties	in	the	Kano	approach

Dissatisfiers:	A	requirement	specifies	a	dissatisfier	the	system	must	possess
in	order	to	be	successfully	introduced	to	the	market.

Satisfiers:	A	 requirement	specifies	a	satisfier	 if	 the	customers	consciously
demand	the	associated	property.	Satisfiers	of	the	system	specify	the	degree
of	 satisfaction	 of	 the	 customer.	 An	 increase	 in	 the	 number	 of	 satisfiers
usually	leads	to	increased	customer	satisfaction.
Delighters:	 A	 requirement	 specifies	 a	 delighter	 if	 the	 customers	 do	 not
consciously	 demand	 the	 defined	 system	property	 or	 the	 customers	 do	 not
expect	 the	 implementation	 of	 the	 property.	 The	 customer	 satisfaction
increases	exponentially	by	implementing	delighters.

On	the	basis	of	requirements	classified	according	to	Kano,	a	prioritization	of	the
requirements	can	be	performed	in	order	to	plan	the	system	releases,	for	example.

Prioritization	Matrix	According	to	Wiegers

Computing	requirement	priorities

The	prioritization	matrix	according	 to	Wiegers	 [Wiegers	1999]	 is	 an	analytical
prioritization	 approach	 for	 requirements.	 The	 core	 of	 the	 approach	 is	 a
prioritization	 matrix	 according	 to	 which	 the	 priorities	 of	 the	 regarded
requirements	can	be	determined	systematically.	Figure	8-4	shows	the	structure	of
a	prioritization	matrix	according	to	Wiegers	as	well	as	the	method	according	to
which	priorities	are	calculated.

Figure	8-4	Calculation	of	priorities	in	a	prioritization	matrix	according	to	Wiegers

Systematic	method	to	determine	the	requirement	priorities

In	the	following,	the	calculation	of	priorities	in	a	prioritization	matrix	according
to	Wiegers	is	only	briefly	sketched.	More	detailed	information	can	be	found	in
[Wiegers	1999].

The	calculation	of	priorities	 in	a	prioritization	matrix	according	 to	Wiegers
can	be	done	as	follows:

1.	 Determine	the	relative	weights	for	benefit,	detriment,	cost,	and	risk.
2.	 Determine	the	requirements	to	be	prioritized.
3.	 Estimate	the	relative	benefit.
4.	 Estimate	the	relative	detriment.
5.	 Calculate	the	total	values	and	percentage	values	for	each	requirement:

Value%(Ri)	=
Benefit(Ri)	x	WeightBenefit	+	Detriment(Ri)	x	WeightDetriment

6.	 Estimate	 the	 relative	 cost	 and	 calculate	 the	 cost	 percentage	 for	 each
requirement.

7.	 Estimate	 the	 relative	 risks	 and	 calculate	 the	 risk	 percentage	 for	 each
requirement.

8.	 Calculate	the	individual	requirement	priorities:

Priority(Ri)=
Value%(Ri)/(Cost%(Ri)	x	WeightCost	+	Risk%(Ri)	x	WeightRisk)

9.	 Assert	the	rank	of	the	individual	requirements.

It	became	apparent	 in	practice	 that	 analytical	prioritization	approaches	 such	as
the	 prioritization	 matrix	 according	 to	 Wiegers	 as	 sketched	 above	 demand
considerably	 more	 time	 and	 effort	 than	 ad	 hoc	 approaches,	 so	 these	 ad	 hoc
approaches	 are	 to	 be	 favored	 in	 many	 cases.	 However,	 analytical	 approaches
have	the	advantage	that	the	degree	of	subjectivity	in	the	prioritization	results	can
be	significantly	reduced	so	that	they	lead	to	more	objective	and	comprehensible
results	in	complex	and	critical	prioritization	situations.

8.4	Traceability	of	Requirements

An	important	aspect	of	requirements	management	is	ensuring	the	traceability	of
requirements.	 The	 traceability	 of	 a	 requirement	 is	 the	 ability	 to	 trace	 the

requirements	over	 the	course	of	 the	entire	 life	cycle	of	 the	system	(see	section
4.5.5).

8.4.1	Advantages	of	Traceable	Requirements

Advantages	of	requirements	traceability

The	 use	 of	 traceability	 information	 supports	 system	 development	 in	 many
aspects	 and	 is	 often	 the	 precondition	 for	 establishing	 and	 using	 certain
techniques	during	the	developmental	process	[Pohl	1996;	Ramesh	1998]:

Verifiability:	 Traceability	 of	 requirements	 allows	 verifying	 whether	 a
requirement	 has	 been	 implemented	 in	 the	 system,	 i.e.,	 if	 the	 requirement
has	been	implemented	through	a	system	property.
Identification	 of	 gold-plated	 solutions	 in	 the	 system:	 Traceability	 of
requirements	allows	for	the	identification	of	so-called	gold-plated	solutions
of	 the	 developed	 system	 and	 thereby	 allows	 identifying	 unneeded
properties.	 In	 order	 to	 do	 that,	 for	 each	 system	 property	 (functional	 or
qualitative),	a	check	is	performed	to	determine	whether	it	contributes	to	the
implementation	of	a	requirement	of	the	system.
Identification	 of	 gold-plated	 solutions	 in	 the	 requirements:	 Tracing
requirements	 back	 to	 their	 origin	 allows	 identifying	 requirements	 that	 do
not	contribute	 to	any	system	goal	and	are	not	associated	with	any	source.
Usually,	there	is	no	reason	for	these	requirements	to	exist	and	hence	these
requirements	do	not	have	to	be	implemented.
Impact	 analysis:	 Traceability	 of	 requirements	 allows	 for	 the	 analysis	 of
effects	 during	 change	 management.	 For	 example,	 traceability	 of
requirements	 allows	 identifying	 the	 requirements	 artifacts	 that	 must	 be
changed	when	their	underlying	requirements	undergo	a	change.
Reuse:	 Traceability	 of	 requirements	 allows	 for	 the	 reuse	 of	 requirements
artifacts	 in	 other	 projects.	 By	 comparing	 the	 requirements	 of	 a	 previous
project	 to	 the	 requirements	 of	 a	 new	 project	 by	 means	 of	 trace	 links,
development	 artifacts	 (e.g.,	 components,	 test	 cases)	 can	 be	 identified	 that
may	be	adapted	and/or	reused	in	the	new	development	project.
Accountability:	 Traceability	 of	 requirements	 allows	 for	 retroactive
assignment	of	development	efforts	to	a	requirement.	After	the	requirement
is	 implemented,	 for	 example,	 all	 partial	 efforts	 for	 the	 associated

development	 artifact	 can	 be	 summed	 up	 and	 associated	 with	 the
requirement.
Maintenance:	 Traceability	 of	 requirements	 allows	 for	 simplified	 system
maintenance.	For	example,	the	cause	and	effect	of	failures	can	be	identified,
the	system	components	 that	are	affected	by	 the	failure	can	be	determined,
and	the	effort	for	removing	the	underlying	error	can	be	estimated.

8.4.2	Purpose-Driven	Definition	of	Traceability

As	 resources	 are	 usually	 severely	 restricted	 during	 development	 projects,
capturing	 all	 conceivable	 information	 that	 supports	 the	 traceability	 of
requirements	over	the	course	of	the	system	life	cycle	is	almost	never	possible.

Purpose	of	traceability	information

In	order	to	establish	requirements	traceability	effectively	and	efficiently,	the
information	to	be	recorded	should	be	chosen	with	respect	to	the	purpose	that	it
will	 serve.	 In	other	words,	only	 the	 information	which	has	a	 clear	purpose	 for
system	development	or	system	evolution	[Dömges	and	Pohl	1998;	Ramesh	and
Jarke	2001]	ought	 to	be	 recorded.	Recording	of	 traceability	 information	 that	 is
not	purpose	driven	often	results	in	the	fact	that	the	recorded	information	cannot
be	 profitably	 used	 in	 the	 development	 project.	 Traceability	 information	 that	 is
recorded	 in	 this	 fashion	 is	 often	 sketchy	 and	 incomplete,	 unstructured,	 and
erroneous	with	regard	to	its	further	use.

8.4.3	Classification	of	Traceability	Relations

Pre-RS	traceability	and	post-RS	traceability

The	 pertinent	 literature	 on	 the	 topic	 of	 requirements	 traceability	 suggests
different	 kinds	 of	 traceability	 of	 requirements.	 A	 common	 differentiation	 is
distinguishing	between	pre-requirements-specification	 (pre-RS)	 traceability	and
post-requirements-specification	 (post-RS)	 traceability	 of	 requirements	 [Gotel
and	Finkelstein	1994].	We	thus	distinguish	between	three	kinds	of	traceability:

Pre-RS	 traceability:	 Pre-RS	 traceability	 are	 traceability	 links	 between

requirements	and	those	artifacts	that	are	the	basis	for	the	requirements,	e.g.,
artifacts	like	the	source	or	origin	of	a	requirement	(previous	artifacts).
Post-RS	 traceability:	 Post-RS	 traceability	 comprises	 traceability
information	between	requirements	and	artifacts	of	subsequent	development
activities.	 For	 example,	 such	 artifacts	 could	 be	 components,
implementation,	 or	 test	 cases	 that	 belong	 to	 a	 requirement	 (posterior
artifacts).
Traceability	 between	 requirements:	The	 traceability	 between	 requirements
is	about	mapping	dependencies	between	requirements.	An	example	of	this
kind	 of	 traceability	 is	 the	 information	 that	 a	 requirement	 refines	 another
requirement,	generalizes	it,	or	replaces	it.

Figure	8-5	shows	the	three	types	of	traceability	of	requirements	in	requirements
engineering.

Figure	8-5	Types	of	requirements	traceability

Figure	 8-6	 shows	 the	 three	 types	 of	 requirements	 traceability	 by	 means	 of
requirement	 “R-14”	 in	 an	 example.	 The	 pre-RS	 traceability	 comprises	 the
relations	of	requirement	“R-14”	to	its	origin.	The	origin	of	this	requirement	are
the	 artifacts	 in	 the	 system	context	 that	 influence	 the	 requirement.	The	post-RS
traceability	of	requirement	“R-14”	consists	of	the	relations	to	the	components	in
the	rough	design,	the	refined	design,	and	the	respective	implementation	as	well
as	test	cases	that	are	used	during	system	testing	and	verify	the	implementation	of
the	requirement	in	the	developed	system.

Figure	8-6	Example	of	the	three	types	of	requirements	traceability

In	 addition,	 figure	 8-6	 shows	 the	 traceability	 between	 requirements.	 The
traceability	 link	 between	 requirement	 “R-14”	 and	 “R-11”	 documents	 that
requirement	“R-14”	was	derived	from	requirement	“R-11”.

8.4.4	Representation	of	Requirements	Traceability

Requirements	traceability	information	can	be	represented	in	different	ways.	The
most	 common	 approaches	 to	 representing	 traceability	 are	 simple	 textual
references,	hyperlinks,	and	trace	matrices	and	trace	graphs.

Text-Based	References	and	Hyperlinks

This	simple	way	to	represent	 traceability	 information	of	a	requirement	consists
of	annotating	the	target	artifact	as	a	textual	reference	in	the	requirement	(initial
artifact)	 or	 to	 establish	 a	 hyperlink	 between	 the	 initial	 artifact	 and	 the	 target
artifact.	When	 linking	artifacts,	 different	 types	of	hyperlinks	with	 specific	 link
semantics	can	be	used.

Trace	Matrices

Another	 common	 technique	 for	 representing	 and	 documenting	 traceability
information	between	requirements	as	well	as	between	requirements	and	previous
and	posterior	artifacts	in	the	development	process	are	trace	matrices.	The	rows	in
a	 trace	 matrix	 contain	 the	 initial	 artifacts	 (requirements).	 In	 the	 columns,	 the
target	 artifacts	 (e.g.,	 sources	 of	 requirements,	 development	 artifacts,
requirements)	are	represented.	If	a	trace	link	exists	between	an	initial	artifact	in
row	n	and	a	target	artifact	in	column	m,	cell	(n,	m)	is	marked	in	the	trace	matrix.

Interpretation	of	a	trace	matrix

Figure	8-7	shows	a	simple	 trace	matrix	for	 the	 trace	relation	“derived”	 that
exists	 between	 two	 requirements.	An	 entry	 in	 the	matrix	 specifies	 that	 a	 trace
link	of	type	“derived”	exists	from	a	requirement	“Req-n”	to	another	requirement
“Req-m”	such	that	“Req-n”	was	derived	from	“Req-m”.

Figure	8-7	Representation	of	traceability	information	in	a	trace	matrix

Maintainability	of	trace	matrices

In	practice,	it	became	apparent	that	trace	matrices	are	difficult	to	maintain	as	the
number	of	requirements	increases.	A	trace	matrix	that,	for	example,	documents
the	refinement	 relations	between	merely	2,000	requirements	contains	over	 four
million	cells.	In	addition,	many	trace	matrices	must	be	created	in	order	to	be	able
to	represent	the	available	information	cleanly	(e.g.,	with	regard	to	different	types
of	traceability	links).

Trace	Graphs

A	 trace	 graph	 is	 a	 graph	 in	 which	 all	 nodes	 represent	 artifacts	 and	 all	 edges
represent	 relationships	 between	 artifacts.	 The	 distinction	 between	 different
artifacts	and	types	of	traceability	can	be	realized	by	means	of	assigning	different
attributes	to	the	nodes	and	edges	of	the	graph.

Trace	graph	over	different	development	artifacts.

Figure	8-8	 shows	 the	 representation	of	 traceability	 information	 in	 a	 simple
example.	 In	 the	 trace	 graph,	 a	 node	 type	 is	 defined	 for	 each	 type	 of	 artifact
(context	 information	 “C”,	 requirements	 “Req-n”,	 components	 “Comp-n”).	 In
addition,	three	types	of	edges	are	defined	to	represent	three	types	of	traceability
relations	(“realized	through”,	“is	origin”,	“refines”).

Figure	8-8	Representation	of	traceability	in	a	trace	graph	(extract)

Traceability	chains

If	 traceability	 information	 about	 previous	 artifacts	 (e.g.,	 stakeholders	 and
interview	 protocols)	 as	 well	 as	 posterior	 artifacts	 (e.g.,	 test	 cases	 and
components)	must	be	managed,	traceability	chains	for	the	respective	requirement
can	be	created	at	different	levels,	up	to	a	trace	of	the	requirement	over	the	entire
life	cycle	of	 the	system.	Common	tools	 to	maintain	requirements	allow	for	 the
definition	 of	 representation	 levels	 when	 creating	 traceability	 chains	 so	 that,
depending	 on	 the	 selected	 level,	 only	 immediate	 relations	 of	 a	 requirement	 or
entire	 traceability	 chains	 for	 the	 requirement	 can	 be	 generated	 and	 displayed.
The	 traceability	chains	are	 the	foundation	for	a	comprehensive	 impact	analysis
during	requirements	change	management.

8.5	Versioning	of	Requirements

During	the	life	cycle	of	a	system,	the	requirements	of	the	system	change	as	new
requirements	 are	 added	 and	 existing	 requirements	 are	 removed	or	 altered.	The
reasons	 for	 changes	 in	 requirements	 are	 diverse.	 One	 possible	 reason	 is,	 for
instance,	 the	 fact	 that	 stakeholders	 learn	 more	 and	 more	 about	 the	 system	 as
requirements	engineering	progresses.	As	a	result,	new	and	altered	requirements
come	to	their	mind.	Due	to	these	changes,	a	suitable	versioning	of	requirements
is	strongly	advisable.

Subject	of	version	control

Versioning	of	 requirements	aims	at	providing	access	 to	 the	 specific	change
states	of	individual	requirements	over	the	course	of	the	life	cycle	of	the	system.
The	version	of	a	requirement	is	defined	by	its	specific	content	of	the	change	state
and	 is	marked	 by	 a	 unique	 version	 number.	The	 information	 that	 is	 subject	 to
version	management	can	be	single	 text-based	 requirements,	 sentences,	 sections
of	 requirements	 documents,	 or	 entire	 requirements	 documents,	 but	 also
requirements	models	and	partial	requirements	models.

8.5.1	Requirements	Versions

When	versioning	requirements,	one	can	distinguish	between	the	version	and	the
increment	 of	 the	 version	 number.	 For	 example,	 the	 version	 number	 1.2
references	a	requirement	with	version	1	and	the	increment	2.

Figure	8-9	illustrates	the	method	of	assigning	version	numbers.	As	shown	in
the	figure,	with	smaller	changes	regarding	the	content,	the	increment	is	increased
by	one.	 If	 larger	changes	are	performed,	 the	version	number	 is	 incremented.	 If
the	version	number	is	increased,	the	increment	is	set	to	the	initial	value	(0).	A	v
can	be	added	in	front	of	the	version	number	to	make	it	more	understandable	and
easier	to	identify	as	such.

Figure	8-9	Requirements	versions

Along	with	the	rather	simple	structuring	by	means	of	version	numbers,	and	the
proposed	method	of	versioning	requirements,	other	methods	of	assigning	version
numbers	are	widely	used.	For	example,	it	is	possible	to	distinguish	between	the
version	 identifier,	 the	 increment	 identifier,	 and	 the	 sub-increment	 identifier
(v1.2.12).

8.5.2	Requirements	Configurations

A	 requirements	 configuration	 consists	 of	 a	 set	 of	 requirements	 with	 the
additional	condition	that	each	selected	requirement	is	present	in	the	requirements
configuration	with	exactly	one	version,	identified	by	the	version	number.

Dimensions	of	configuration	management	of	requirements

Managing	 configurations	 of	 requirements	 can	 be	 described	 in	 two
dimensions	 [Conradi	 and	 Westfechtel	 1998]:	 In	 the	 product	 dimension,
configuration	 management	 deals	 with	 individual	 requirements	 within	 the
requirements	 base	 (foundation).	 In	 the	 version	 dimension,	 configuration
management	considers	the	various	change	states	as	part	of	version	management
within	 the	 product	 dimension.	 Figure	 8-10	 illustrates	 both	 dimensions	 of
configuration	 management	 of	 requirements.	 On	 the	 requirements	 axis,
requirements	are	 represented.	On	 the	version	axis,	 the	different	versions	of	 the
requirements	are	depicted.

Figure	8-10	Dimensions	of	configuration	management	of	requirements	(based	on	[Conradi	and	Westfechtel
1998])

Properties	of	requirements	configurations

A	configuration	of	 requirements	subsumes	a	defined	set	of	 logically	connected
requirements	(more	precisely,	versions	of	requirements),	where	each	requirement
of	 the	 requirements	 base	 may	 occur	 at	 most	 once	 in	 the	 requirements
configuration.	A	requirements	configuration	does	not	need	to	contain	a	version
of	every	requirement	that	 is	considered	in	the	product	dimension	(see	figure	8-
10,	 requirements	 configuration	 1).	 A	 configuration	 of	 requirements	 has	 the
following	properties:

Logical	 connection:	 The	 requirements	 contained	 in	 a	 configuration	 are
directly	logically	connected	to	one	another,	i.e.,	a	goal-oriented	grouping	of
the	requirements	to	a	common	configuration	has	been	performed.
Consistency:	 The	 requirements	 contained	 in	 a	 configuration	 do	 not
contradict	one	another,	i.e.,	the	configuration	contains	requirements	that	are
contradiction	free	in	their	respective	version.
Unique	 identification:	A	 configuration	 has	 a	 unique	 identifier	 (ID)	which
can	be	used	to	uniquely	identify	the	configuration.
Immutable:	 A	 configuration	 defines	 a	 certain,	 immutable	 state	 of	 the
specification.	If	requirements	of	a	configuration	are	changed,	a	new	version

of	the	requirements	and	potentially	of	the	configuration	is	the	result.
Basis	 for	 rollbacks:	 If	 changes	 of	 requirements	 must	 be	 undone,
configurations	 offer	 the	 ability	 to	 roll	 back	 requirements	 to	 a	 specific
version	 within	 a	 configuration.	 Therefore,	 a	 consistent	 state	 of	 the
specification	can	be	maintained.

8.5.3	Requirements	Baselines

Configuration	vs.	baseline

Requirements	baselines	are	specific	configurations	of	requirements	that	typically
comprise	 stable	 versions	of	 requirements	 and,	 also,	 often	define	 a	 release	of	 a
system.	 Due	 to	 that	 property,	 requirements	 baselines	 are	 usually	 visible
externally	 (e.g.,	 to	 the	 contractor).	 When	 requirements	 baselines	 are	 used,	 a
number	of	important	activities	in	the	development	process	are	supported:

Basis	 for	 release	 planning:	 Requirements	 baselines	 are	 configurations	 of
“stable”	 requirements,	 specially	 marked	 for	 the	 contractor.	 Baselines
therefore	 serve	 as	 the	 basis	 of	 communication	 for	 the	 planning	of	 system
releases	as	well	as	their	definition.
Estimation	 of	 the	 effort	 involved	 with	 implementation:	 As	 baselines	 of
requirements	can	be	used	for	the	definition	of	system	releases,	they	can	also
be	used	to	estimate	the	effort	needed	to	realize	a	system	release.	This	can	be
done	 by	 estimating	 the	 partial	 effort	 involved	 with	 implementing	 a
requirement	 of	 the	 baseline	 and	 summing	 up	 the	 total	 effort	 for	 the
remaining	baseline.
Comparison	to	competing	products:	Requirements	baselines	can	be	used	to
compare	the	planned	system	to	competing	systems.

8.6	Management	of	Requirements	Changes

Requirements	change	over	the	course	of	the	entire	development	and	life	cycle	of
a	system.	This	means	that	new	requirements	are	added	and	existing	requirements
are	changed	or	removed.

8.6.1	Requirements	Changes

Reasons	for	changes

The	 reasons	 for	 changes	 in	 requirements	 can	 be	 multifarious.	 Along	 with
changes	 that	 stem	 immediately	 from	 errors	 or	 incomplete	 requirements,	 the
evolution	of	the	context	can	make	it	necessary	to	change	the	requirements.	For
example,	 changes	 in	 the	 stakeholders’	 desired	 application	 of	 the	 system,
amendments	to	a	law,	new	technologies,	or	additional	competition	in	the	market
can	 influence	 the	 requirements	 and	 make	 changes	 necessary.	 Changes	 in
requirements,	however,	can	also	stem	from	system	failure	after	 the	system	was
deployed	if	an	error	in	the	requirements	can	be	held	responsible	for	the	failure.

Changes	per	se	are	not	negative.

Changes	 in	 requirements	 per	 se	 are	 not	 negative.	 They	 are	 merely	 an
indication	 that	 stakeholders	 deal	 closely	 with	 the	 system	 and	 learn	 more	 and
more	about	its	functions,	qualities,	and	restrictions.	If	change	requests	only	occur
infrequently	 during	 development	 of	 the	 system,	 it	 may	 be	 a	 sign	 of	 low
stakeholder	interest	in	the	system	to	be	developed.

Change	frequency	as	an	indicator	of	process	quality

However,	if	requirements	changes	occur	very	frequently,	the	development	of
a	 system	 that	 is	 in	 agreement	 with	 all	 involved	 stakeholders	 becomes	 nearly
impossible.	 A	 high	 change	 frequency	 is,	 among	 other	 things,	 an	 indicator	 for
inadequately	 performed	 requirements	 engineering	 activities,	 such	 as	 elicitation
and	negotiation	techniques.	In	addition,	a	high	change	frequency	takes	up	a	lot
of	resources	in	the	development	project.

8.6.2	The	Change	Control	Board

Over	 the	 course	 of	 the	 system	 life	 cycle,	 it	 is	 necessary	 to	 channel	 change
requests	 for	 requirements	 and	 define	 a	 structured	 process	 that	 will	 lead	 to	 a
justified	 decision	 about	 whether	 a	 change	 request	 is	 approved	 and	 how	 it	 is
approved.	 Changes	 can	 pertain	 to	 individual	 requirements	 (e.g.,	 redefining	 a
requirement)	 or	 the	 entire	 requirements	 document.	 The	 evaluation	 of

requirements	 changes,	 as	well	 as	 the	 decision	 about	 performing	 the	 change,	 is
usually	 the	 responsibility	of	a	change	control	board.	The	change	control	board
(CCB)	typically	has	the	following	tasks:

Tasks	of	the	change	control	board

Estimate	 the	 effort	 for	 performing	 the	 change	 (potentially	 commission	 a
third	party	with	an	effort	analysis).
Evaluate	change	requests,	e.g.,	with	respect	to	the	effort/benefit	ratio.
Define	 requirement	 changes	 or	 define	 new	 requirements	 on	 the	 basis	 of
change	requests.
Decide	about	acceptance	or	rejection	of	change	requests.
Classify	incoming	change	requests.
Prioritize	accepted	change	requests.
Assign	accepted	change	requests	to	change	projects.

Representatives	in	the	change	control	board

In	 some	 cases,	 the	 CCB	 may	 want	 to	 delegate	 these	 tasks	 to	 another	 party.
Decisions	 about	 changes	 have	 to	 be	 negotiated	 and	 agreed	 upon	 with	 the
contractor	and	all	 involved	stakeholders	 in	 the	development	project.	Therefore,
the	 change	 control	 board	 should	 consist	 of,	 among	 others,	 the	 following
stakeholders,	depending	on	the	properties	of	the	system	to	be	developed	and	the
development	process:

Change	manager
Contractor
Architect
Developer
Configuration	manager
Customer	representative
Product	manager
Project	manager
Quality	assurance	representative
Requirements	engineer

The	role	of	the	change	manager

The	chairperson	of	the	change	control	board	is	the	change	manager.	The	change
manager	has	the	task,	among	other	things,	of	mediating	between	parties	in	case
of	conflicts	and	to	negotiate	decisions	with	the	respective	parties.	In	addition,	the
change	manager	is	responsible	for	communicating	and	documenting	decisions.

8.6.3	The	Change	Request

Template	for	change	requests

In	 order	 to	 be	 able	 to	 manage	 changes	 of	 requirements	 during	 requirements
engineering,	 they	 have	 to	 be	 documented	 in	 a	 purpose-oriented	 manner.	 A
change	 request	 documents	 the	 desired	 change	 and	 contains	 additional
information	for	the	management	of	the	change	request.

A	change	request	should	contain	the	following	information:

Change	information

Identifier:	 The	 identifier	 makes	 it	 possible	 to	 uniquely	 identify	 a	 change
request	at	any	point	during	the	life	cycle	of	the	system.
Title:	 The	 title	 summarizes	 the	 key	 concern	 of	 the	 change	 request	 in	 one
brief	statement.
Description:	 The	 description	 documents	 the	 requirement	 change	 as
precisely	as	possible.	It	can	contain	information	on	the	effect	of	the	changes
as	well.
Justification:	The	most	important	reasons	as	to	why	the	change	is	necessary
are	listed	here.
Date	filed:	The	date	at	which	the	change	request	was	filed.
Applicant:	The	name	of	the	person	that	issued	the	change	request.
Priority	(in	the	applicant’s	opinion):	The	importance	of	the	change	request
according	to	the	applicant’s	opinion.

Management	information	for	the	change	request

In	addition	 to	 the	preceding	change	 information,	 the	 following	 information	 for
requirements	change	management	is	helpful:

Change	 validator:	 The	 person	 that	 verifies	 if	 the	 change	 has	 been
performed	correctly.
Impact	analysis	status:	Flags	whether	an	impact	analysis	has	already	been
performed	on	the	change	request.
CCB	decision	status:	 Flags	whether	 the	 change	 control	 board	has	 already
decided	upon	the	change	request.
CCB	priority:	Documents	the	priority	of	the	change	request	assigned	by	the
change	control	board.
Responsible:	 Documents	 the	 person	 that	 is	 in	 charge	 of	 performing	 the
change	request.
System	 release:	 Documents	 in	 which	 system	 release	 the	 changed
requirement	shall	be	implemented.

8.6.4	Classification	of	Incoming	Change	Requests

Corrective,	adaptive,	and	exceptional	changes

After	 it	has	been	 filed,	 the	change	 request	 is	classified	by	 the	change	manager
and	 the	 change	 control	 board.	 Typically,	 the	 change	 manager	 pre-classifies
incoming	 change	 requests	 that	 will	 be	 introduced,	 adapted	 (if	 necessary),	 and
finally	approved	(or	rejected)	during	 the	next	change	control	board	meeting.	A
change	request	can	be	classified	according	to	the	following	three	categories:

Corrective	requirement	change:	A	change	request	is	classified	thusly	if	the
reason	for	the	change	request	is	a	failure	of	the	system	during	its	operation
that	can	be	attributed	to	an	error	in	the	requirements.
Adaptive	 requirement	 change:	 A	 change	 request	 is	 thusly	 classified	 if	 a
requested	change	requires	the	system	to	be	amended.	A	possible	reason	for
an	adaptive	requirement	change	can	be	a	change	in	the	system	context,	e.g.,
a	 new	 technology	 is	 available	 or	 the	 system	 boundary	 was	 altered	 (see
section	2.2).
Exceptional	 change	 (hotfix):	 A	 change	 request	 is	 classified	 as	 an
exceptional	 change	 if	 the	 change	must	 absolutely	 immediately	be	done	 at

all	costs.	Exceptional	changes	can	be	either	corrective	or	adaptive.

Different	processing	methods

The	method	for	processing	requirements	changes	depends	on	their	classification.
For	 example,	 exceptional	 changes	 must	 be	 analyzed,	 evaluated,	 decided,	 and
potentially	implemented	right	away.	Contrastingly,	adaptive	requirement	changes
are	often	processed	 in	batches	at	a	 later	point	 in	 time,	 typically	as	 soon	as	 the
next	 (or	 some	 subsequent)	 system	 release	 is	 imminent.	 On	 the	 other	 hand,
corrective	requirement	changes	are	usually	analyzed,	evaluated,	and	if	necessary
implemented	rather	promptly	after	the	change	request	has	been	filed.

8.6.5	Basic	Method	for	Corrective	and	Adaptive	Changes

Figure	8-11	 illustrates	 the	 principal	method	 of	 handling	 change	 requests.	 This
method	 can	 be	 tailored	 depending	 on	 organizational	 and	 project-specific
particularities.

Figure	8-11	Method	for	handling	change	requests

Impact	analysis

During	 impact	 analysis,	 the	 effort	 for	 performing	 the	 change	 is	 estimated.	 In
order	to	do	so,	all	requirements	affected	by	the	change	are	sought	out,	including
any	newly	defined	requirements.	Afterward,	the	posterior	development	artifacts
that	potentially	will	have	to	be	changed	or	redeveloped	are	identified	(e.g.,	 test
cases	or	components).	For	each	affected	artifact,	the	effort	for	implementing	the
change	is	determined	and	the	total	effort	for	the	change	is	computed	by	summing
up	all	partial	efforts.

The	 consistent	 integration	of	 the	 changes	 into	 the	 requirements	 basis	 often
only	negligibly	influence	the	total	effort.	The	most	significant	portion	of	the	total
effort	 is	 usually	 generated	 by	 the	 necessary	 adaptations	 of	 the	 posterior
development	artifacts.

Using	traceability	information

Identifying	 those	 requirements	 and	 posterior	 development	 artifacts	 that	 are
affected	 by	 a	 requirements	 change	 can	 be	 automated	 or	 at	 least	 supported	 by
means	 of	 traceability	 information.	 If	 no	 or	 not	 all	 necessary	 traceability
information	 is	 available,	 domain	 experts	 or	 experts	 of	 the	 development	 team
should	 be	 questioned	 with	 respect	 to	 the	 consequences	 of	 the	 change	 request
filed.

Evaluating	a	change

After	 the	 impact	 analysis	 has	 been	 completed,	 the	 change	 control	 board
evaluates	the	change	filed.	In	order	to	do	that,	cost	and	benefit	are	compared	and
evaluated	with	regard	to	the	available	resources.	For	example,	the	benefit	of	the
change	can	be	the	avoided	loss	in	prestige,	improved	market	position,	or	avoided
contract	penalties.

Implementing	approved	changes

In	 the	 next	 step,	 approved	 changes	 are	 prioritized	 by	 the	 change	 control
board.	Afterward,	the	requirements	changes	are	assigned	to	a	change	project	or
the	next	(or	any	subsequent)	system	release	for	implementation.

Validating	the	requirement	changes

Planning,	 control	 of	 the	 implementation,	 and	validation	of	 the	 successfully
applied	changes	are	typically	the	responsibility	of	the	change	manager	or	of	the
change	control	board	and	may	be	delegated,	of	course.

8.7	Measurement	of	Requirements

Metrics	can	be	used	to	assess	 the	quality	of	requirements	and	the	requirements
engineering	process.	A	metric	can	be	used	to	measure	one	or	more	properties	of
requirements	 or	 of	 the	 requirements	 engineering	 process.	 The	 measurement
results	 obtained	 by	 using	 metrics	 are	 indicators	 of	 the	 product	 and	 process
quality.

8.7.1	Product	vs.	Process	Metric

We	thus	differentiate	between	two	types	of	metrics:

Product	metrics,	used	to	obtain	insights	regarding	the	amount	and	quality	of
the	documented	requirements	and	requirements	documents
Process	metrics,	used	to	obtain	insights	regarding	the	progress	and	quality
of	the	requirements	engineering	process

8.7.2	Examples	of	Product	and	Process	Metrics

A	 typical	 example	 of	 a	 process	 metric	 used	 in	 requirements	 engineering	 is	 a
metric	used	to	measure	the	“requirements	changes”	over	a	period	of	time	(e.g.,
already	agreed-upon	requirements	that	have	been	changed	within	one	month	or
week).

A	typical	example	of	a	product	metric	used	in	requirements	engineering	is	a
metric	 used	 to	 measure	 the	 “number	 of	 requirements	 errors”	 identified	 in	 a
requirements	 specification	 at	 a	 given	 point	 in	 time.	Typically,	 the	 error	 rate	 is
calculated	as	a	relative	value,	for	example,	per	100	pages	of	the	specification	or
per	1000	requirements.

The	rate	of	requirements	errors	is	primarily	an	indicator	of	the	quality	of	the
requirements	 documents	 produced.	 Moreover,	 it	 is	 also	 an	 indicator	 of	 the
quality	of	the	requirements	engineering	process.

8.8	Summary

Requirements	management	 is	 a	 core	 activity	 of	 requirements	 engineering.	 It’s
the	 aim	 of	 this	 activity	 to	 maintain	 persistent	 availability	 of	 the	 documented
requirements	as	well	as	other	relevant	information	over	the	course	of	the	entire
system	or	product	 life	cycle,	 to	structure	 this	 information	 in	a	sensible	manner
(e.g.,	by	means	of	requirements	attributes),	and	to	ensure	selective	access	to	this
information.	 The	 management	 of	 requirements	 comprises	 techniques	 of	 the
following	categories:

Assigning	 attributes	 to	 requirements:	 In	 order	 to	 allow	 for	 requirements
management,	 properties	 of	 requirements	 are	 documented	 by	 means	 of
requirements	attributes.
Prioritizing	requirements:	 Requirements	 are	 prioritized	 at	 different	 points
in	 time,	 during	 different	 activities,	 and	 according	 to	 different	 criteria.
Depending	 on	 the	 goal	 of	 prioritization	 and	 the	 subject	 of	 prioritization,
different	prioritization	techniques	are	to	be	used.
Traceability	 of	 requirements:	 During	 requirements	 management,
traceability	 information	 of	 requirements	 is	 recorded,	 organized,	 and
maintained	 so	 that	 information	 about	 cross	 references	 and	 dependencies
between	 requirements	 or	 between	 requirements	 and	 other	 development
artifacts	can	be	used.
Versioning	 of	 requirements:	 Versioning	 and	 configuring	 requirements
makes	 it	possible	 to	keep	 information	about	 specific	developmental	 states
of	 requirements	 and	 requirements	 documents	 available	 over	 the	 course	 of
the	life	cycle	of	the	system	or	the	product.
Management	of	requirements	changes:	Usually,	the	change	control	board	is
responsible	 for	 processing	 change	 requests.	 The	 change	 control	 board
decides	 if	 a	 change	 request	 is	 approved	or	 rejected	 and	prioritizes	 it.	The
board	also	performs	an	impact	analysis	to	estimate	the	impact	of	the	change
on	 all	 requirements	 and	 development	 artifacts	 as	 well	 as	 the	 resources
necessary	for	implementing	the	change.
Measurement	of	requirements:	Product	and	process	metrics	can	be	used	to
measure	 the	quality	of	 the	 requirements	and	 the	 requirements	engineering
process.

9	Tool	Support

The	 different	 activities	 of	 requirements	 engineering	 should	 be	 supported	 by
adequate	tools	that	ideally	integrate	and	continue	processing	the	already	existing
information.	 This	 information	 could	 have	 been	 generated	 during	 requirements
engineering	(e.g.,	natural	language	or	model-based	requirements)	or	could	have
been	 used	 as	 the	 basis	 for	 requirements	 (e.g.,	 conversation	 minutes,	 goal
documents,	 lists	of	stakeholders).	 In	practice,	 the	most	commonly	known	tools
for	 requirements	 engineering	 are	 tools	 that	 support	 the	 management	 of
requirements	 (see	 chapter	 8).	 This	 chapter	 primarily	 considers	 requirements
management	 tools	 (RM	 tools,	 for	 short).	Along	with	RM	 tools,	 there	 are	 also
tools	 in	 requirements	 engineering	 that	 support	 the	 elicitation,	 documentation,
negotiation,	and	validation	of	requirements.

9.1	General	Tool	Support

Tools	during	system	development

A	great	number	of	tools	that	are	being	used	during	system	development	can	also
be	 used	 during	 requirements	 engineering.	 In	 that	 sense,	 test	management,	 bug
tracking,	 or	 configuration	management	 tools	 often	 offer	 the	 ability	 to	manage
requirements	or	have	the	ability	to	be	extended	to	do	so.	One	advantage	of	using
such	 tools	 for	 requirements	 management	 is	 that	 requirements	 can	 be	 well
integrated	with	the	artifacts	the	tools	were	originally	designed	to	create,	like	test
cases	or	change	requests.	For	example,	if	requirements	are	managed	using	a	test
management	tool	and	not	a	distinct	RM	tool,	an	interface	between	two	tools	can
be	 omitted	 and	 tracing	 test	 cases	 and	 their	 respective	 requirements	 becomes
much	simpler.

Support	through	wiki	technologies

Wiki	 technologies	 are	 nowadays	 also	 used	 to	 support	 requirements
engineering.	For	 instance,	glossaries	can	be	authored	collaboratively	or	 system
requirements	 can	 be	 worked	 on	 in	 cooperation	 using	 wiki	 technologies.
Especially	 in	 case	of	 systems	with	 a	 large	number	of	 stakeholders,	wikis	have
proven	themselves	as	exceedingly	useful	in	practice.

Tools	to	structure,	present,	visualize,	and	simulate

Tools	 of	 other	 tool	 categories	 can	 help	 increase	 the	 effectiveness	 and
efficiency	 of	 requirements	 engineering.	Mind	 maps	 that	 have	 been	 developed
during	 brainstorming	 sessions	 can	 serve	 as	 a	 structuring	 aid,	 and	 presentation
tools	 can	 help	 in	 designing	 a	 rough	 analysis	 concept.	 If	 prototypes	 are	 used,
simulation	 tools	or	 test	 environments	can	help	 to	 simulate	 the	operation	of	 the
system.	 Tools	 to	 design	 prototypical	 user	 interfaces	 (GUI	 prototypes)	 or
development	environments	can	illustrate	user	interfaces	and	functions	and	serve
as	a	basis	for	discussion.	Flow	charting	tools	and	visualization	programs	can	be
used	to	generate	different	diagrams	and	graphics.

Communication,	office,	and	project	management	tools

Also,	tools	that	are	commonplace	in	everyday	work	scenarios,	such	as	office
suites,	 can	 be	 used	 gainfully	 in	 requirements	 engineering.	 Mail	 clients,	 chat
software,	address	books,	calendar	applications,	and	group-ware	platforms	as	well
as	tools	for	project	management,	planning,	and	project	controlling	are	everyday
work	 tools	 that	 can	 aid	 requirements	 engineering.	 These	 tools	 support
stakeholders	in	the	communication,	planning,	and	coordination	of	their	tasks.

9.2	Modeling	Tools

Along	 with	 natural-language-based	 information,	 in	 requirements	 engineering
information	is	also	documented	based	on	models,	which	can	be	generated	using
modeling	tools	(see	chapter	6).	These	tools	do	not	only	offer	the	ability	to	create
the	models,	they	often	also	allow	analyzing	the	models	for	syntactic	correctness.

When	choosing	modeling	tools,	it	is	important	to	adhere	to	criteria	similar	to
those	 for	 specialized	 requirements	 management	 tools	 (see	 section	 9.5).	 The

modeling	 tool	 must	 provide	 a	 unique	 ID	 to	 each	 model	 element	 to	 support
traceability	between	the	different	models	and	allow	for	multi-user	manipulation.
In	 addition,	 modeling	 tools	 should	 offer	 some	 kind	 of	 version	 control
functionality	with	regard	to	the	models	and	the	model	elements.

Traceability	between	multiple	tools

An	 important	 aspect	 related	 to	 the	 application	 of	 different	 tools	 is	 the
integration	 and	 traceability	 between	 artifacts	 of	 the	 different	 tools	 (e.g.,	 use
cases,	behavior	models,	and	test	cases).	The	choice	of	the	modeling	tool	or	the
RM	tool	ought	to	be	made	with	regard	to	the	interface	between	both	tools.	That
means	 that	 an	 interface	 should	 either	 be	 already	 present	 or	 be	 easy	 to	 create.
Such	 an	 interface	 should	 allow	 for	 tracing	 changes	 in	 models	 and/or
requirements	and	for	managing	the	traces	between	models	and	requirements	(see
chapter	 8).	 If	 requirements	 change,	 it	 is	 indispensable	 to	 make	 the	 necessary
changes	in	the	associated	model	elements	as	well.	Similarly,	if	a	model	changes,
the	necessary	changes	must	be	integrated	into	the	natural	language	requirements
as	well.

9.3	Requirements	Management	Tools

Necessary	properties	of	RM	tools

To	 support	 requirements	 management	 techniques	 (as	 described	 in	 chapter	 8)
most	optimally,	a	RM	tool	should	have	the	following	basic	properties:

Manage	 different	 information	 (e.g.,	 natural	 language	 requirements,
conceptual	models,	sketches,	test	plans,	change	requests)
Manage	 logical	 relationships	 between	 information	 (traceability,	 e.g.,
between	requirements	or	between	requirements	and	their	implementation)
Allow	 for	 unique	 identification	 (e.g.,	 a	 unique	 ID	 for	 every	 managed
artifact)
Edit	 the	 managed	 information	 (multi-user	 accessibility,	 access	 control,
configuration	and	version	management)
Allow	 for	 different	 views	 on	 the	managed	 information,	 depending	 on	 the
purpose
Organize	 the	 managed	 information	 (grouping,	 hierarchically	 structuring,

assigning	attributes,	and	annotation	of	additional	information)
Generate	 reports	 or	 summaries	 regarding	 the	 managed	 information	 (e.g.,
reports	of	change	requests	for	requirements)
Generate	 different	 kinds	 of	 output	 documents	 based	 on	 the	 managed
information	 (e.g.,	 generate	 requirements	 documents	 for	 a	 specific	 system
release)

Depending	 on	 the	 amount	 of	 functions	 and	 depending	 on	 what	 the	 basic
functions	cover,	requirements	management	tools	can	be	categorized	in	two	ways:

Specialized	tools
Standard	office	applications

9.3.1	Specialized	Tools	for	Requirements	Management

Tools	of	this	category	have	been	developed	specifically	to	support	requirements
management	 techniques	 and	 govern	 any	 tasks	 associated	 therewith.
Characteristic	properties	of	such	tools	are	as	follows	(see	chapter	8):

Characteristic	RM	tool	properties

Management	 of	 requirements	 and	 attributes	 on	 the	 basis	 of	 information
models
Organization	of	requirements	(by	means	of	hierarchy	levels)
Configuration	and	version	management	on	requirement	level
Definition	of	requirement	baselines
Multi-user	accessibility	and	management	(e.g.,	access	control)
Traceability	management
Consolidation	of	elicited	requirements	(e.g.,	generation	of	views)
Change	management	support	(change	control)

Architecture	of	RM	tools

The	 different	 RM	 tools	 that	 are	 available	 on	 the	 market	 possess	 a	 similar
structure.	The	most	common	tools	have	a	user	interface	that	the	user	can	use	to
access	all	functions	necessary	to	carry	out	 the	requirements	management	tasks.

The	managed	data	is	stored	in	a	database	and	can	be	edited	using	an	integrated
editor.	Different	import	and	export	functions	for	documents	ensure	that	imported
data	from	external	systems	can	be	read	by	the	RM	tool	and	exported	data	can	be
read	by	external	systems.

Suitability	of	RM	tools

Such	requirements	management	tools	thus	cover	most	of	the	basic	functions.
They	are	very	well	suited	to	managing	the	relevant	information	for	requirements
engineering.	An	overview	of	the	products	that	support	requirements	engineering
and	that	are	available	on	the	market	can	be	found,	for	example,	on	the	website	of
the	INCOSE	and	of	the	Volere	process.

9.3.2	Standard	Office	Applications

In	 many	 projects,	 standard	 office	 applications	 are	 still	 used	 to	 manage
requirements	 (e.g.,	 word	 processors	 and	 spreadsheet	 calculators).	 The	 main
reasons	 for	 this	 are	 that	 on	 one	 hand,	 such	 applications	 are	 very	 widely
distributed,	and	on	the	other	hand,	no	additional	effort	must	be	spent	to	become
familiar	 with	 them.	 In	 conjunction	 with	 using	 templates	 –	 like,	 for	 instance,
templates	for	requirements	documentation	(see	section	5.2)	–	these	applications
are	suited	for	documenting	and,	to	some	extent,	for	managing	requirements	(e.g.,
traceability	relations	can	be	established	by	means	of	hyperlinks).

Office	applications	give	only	little	support.

However,	 such	 tools	 support	 the	 basic	 functions	 of	 requirements
management	 only	 to	 a	 limited	 extent.	 They	 do	 not	 offer	 a	 version	 control
mechanism	on	 the	 level	 of	 requirements,	 nor	do	 they	have	 supporting	 features
for	 specific	 techniques	 for	 requirements	 management	 (e.g.,	 the	 ability	 to
maintain	 traceability	 links	 between	 individual	 artifacts	 in	 an	 automated	 way).
Some	of	the	basic	functions	can	be	emulated	using	other	tools.	For	instance,	an
office	application	that	is	used	in	conjunction	with	some	version	control	tool	may
fulfill	 the	 requirement	 of	 active	 version	 control	 or	managed	multi-user	 access.
Nevertheless,	 the	 productivity	 and	 performance	 with	 regard	 to	 requirements
management	 that	 can	 be	 achieved	 with	 specialized	 tools	 cannot	 be	 achieved
using	standard	office	applications.

9.4	Introducing	Tools

Assign	responsibility.

Before	 any	 effort	 can	 be	 spent	 on	 finding	 a	 tool	 that	 supports	 requirements
management	in	the	best	possible	manner,	responsibilities	regarding	requirements
engineering	 should	 already	 have	 been	 delineated	 in	 the	 organization	 or	 in	 the
project.	In	addition	to	the	parties	responsible,	the	techniques	and	processes	that
are	necessary	to	achieve	the	goal	of	requirements	engineering	and	requirements
management	 (see	 chapter	 8)	 must	 be	 defined.	 After	 all,	 even	 the	 most
sophisticated	 requirements	management	 tool	 is	but	 an	aid	 for	 the	 requirements
engineer	and	requirements	engineering.

The	tool	follows	the	method.

Only	 when	 every	 process	 and	 every	 technique	 has	 been	 defined	 and	 all
involved	 people	 are	 able	 to	 follow	 these	 constraints	 can	 an	 evaluation	 of	 the
available	 tools	be	performed.	The	following	considerations	have	to	be	factored
in	when	choosing	and	introducing	tools	for	requirements	engineering:

Consider	necessary	resources.

The	choice	and	introduction	of	tools	takes	up	resources	in	the	organization.
This	holds	not	only	for	personnel	entrusted	with	the	introduction	of	a	tool,
but	also	for	 the	future	users	of	a	 tool.	These	efforts	have	to	be	considered
during	evaluation.

Pilot	project

In	 practice,	 it	 has	 proven	 problematic	 to	 introduce	 a	 tool	 while	 a
development	 project	 is	 already	 in	 progress.	 While	 additional	 effort	 for
instruction	of	the	employees	can	be	estimated	rather	well,	the	risks	that	are
associated	with	 introducing	 a	 new	 tool	while	 a	 project	 is	 in	 progress	 are
easily	underestimated.	Employee	resistance	or	deficiencies	of	 the	 tool	 that
become	 apparent	 when	 the	 tool	 is	 deployed	 can	 influence	 the	 project
negatively.	 Such	 risks	 can	 be	 avoided	 by	 introducing	 new	 tools	 in	 pilot
projects.	 In	 this	 pilot	 project,	 additional	 resources	 for	 tool	 introduction,
employee	instruction,	and	process	tailoring	should	be	factored	in.

Evaluation

A	 suitable	 tool	 should	 be	 determined	 in	 the	 context	 of	 a	 tool	 evaluation.
When	 manufacturers	 are	 surveyed	 and	 critical	 “must-have”	 criteria	 are
defined,	 potential	 candidates	 for	 introduction	 can	 be	 selected	 and
investigated	in	further	detail.	In	order	to	do	that,	a	catalogue	of	criteria	must
be	 created	 that	 describes	 which	 requirements	 a	 tool	 for	 requirements
engineering	must	fulfill.	The	tools	that	remain	to	be	evaluated	can	then	be
rated	according	to	these	requirements.

Costs

Costs	 for	 a	 tool	 usually	 exceed	 licensing	 cost	 alone.	 Typically,	 costs	 for
employee	 instruction	as	well	 as	potential	 tool	 customization	and	costs	 for
support	must	be	taken	into	account	as	well.

Instruct	employees.

It	is	necessary	for	the	future	users	of	the	tool	to	know,	actively	shape,	and
master	the	processes	and	activities	that	they	encounter	during	requirements
engineering.	 The	 users	 must	 be	 instructed	 with	 regard	 to	 processes,
techniques,	and	the	respective	tool	support.

9.5	Evaluating	Tools

Due	to	the	many	different	kinds	of	tools	that	are	available,	evaluating	tools	with
regard	to	their	adequacy	to	support	requirements	engineering	is	very	tedious	and
challenging	in	practice.

Views	on	tools	in	requirements	engineering

To	evaluate	the	tools	as	objectively	as	possible,	different	views	on	the	tools
in	requirements	engineering	should	be	adopted.	By	defining	different	tool	views,
it	is	possible	to	analyze	the	adequacy	of	a	tool	systematically	and	to	prioritize	the
tool	 requirements	 individually.	 Figure	 9-1	 shows	 views	 that	 could	 be	 used	 to
evaluate	tool	adequacy	in	requirements	engineering.

Figure	9-1	Views	on	a	requirements	engineering	tool

For	each	view,	criteria	should	be	defined	that	are	tailored	toward	the	core	aspects
of	the	respective	perspective.

9.5.1	Project	View

Project	support

The	 project	 view	 shows	 the	 extent	 to	 which	 the	 tool	 can	 support	 the	 project.
Relevant	 criteria	 are	 support	 during	 project	 preparation,	 project	 planning,	 and
project	execution.	With	regard	to	project	preparation,	criteria	can	be	considered
that	 pertain	 to	 the	 definition	 of	 project-specific	 information	 types	 and
documents.	With	regard	to	project	planning,	the	scope	of	defined	milestones	as
well	 as	 how	 information	 and	 documents	 that	 are	 created	 by	means	 of	 the	 tool
pertain	to	the	milestones.	Project	execution	comprises	criteria	that	pertain	to	the
scope	 of	 project	 control	 and	 project	 lead	 on	 the	 basis	 of	 information	 and
documents	that	are	created	with	the	tool.

9.5.2	User	View

Perspective	of	the	future	users

The	 user	 view	 considers	 the	 requirements	 for	 the	 tool	 that	 emerge	 out	 of	 the
perspective	 of	 the	 users	 (e.g.,	 multi-user	 capability).	 The	 evaluation	 from	 the
perspective	of	the	user	is	focused	on	tool	usage,	mapping	of	roles,	and	support	of
group	work.	In	detail,	this	means	that	the	different	stakeholders	that	are	involved
in	 a	 development	 project	 must	 be	 adequately	 mapped	 by	 appropriate	 user
management	and	access	 rights	management.	This	enables	 the	users	 to	gain	 the
appropriate	access	to	the	tool	functions	and	the	stored	information,	depending	on
their	respective	role.

9.5.3	Product	View

Tool	functions

The	 product	 view	 contains	 the	 functionalities	 that	 the	 tool	 possesses	 (e.g.,
different	 documentation	 types	 for	 requirements).	 Among	 other	 things,	 the
supported	document	 types,	views,	and	reports	 that	can	be	generated,	as	well	as
traceability	between	the	selected	products,	are	considered	in	this	view.

9.5.4	Process	View

Method	support	offered	by	the	tool

The	 process	 view	 focuses	 on	 the	 method	 support	 offered	 by	 the	 tool	 (e.g.,
possible	guidance,	maintenance	of	 traceability	 relations).	Considerations	of	 the
process	view	comprise	the	ability	to	document	activities	within	the	tool	as	well
as	 the	extent	 to	which	 the	 tool	offers	method	guidance.	With	regard	 to	method
guidance,	different	degrees	of	obligation	can	be	distinguished.	Method	guidance
can	be	 strict	 and	 restrictive	or	offer	more	 lenient	 suggestions	and	hints.	Along
with	the	degree	of	method	support	that	is	offered	by	the	tool,	the	degree	to	which
a	project-specific	 process	model	 can	be	defined	 can	 also	be	 considered	 in	 this
view.

9.5.5	Provider	View

Market	position	of	the	manufacturer	and	support	offered

The	provider	view	considers	the	market	position	as	well	as	the	different	services
that	are	offered	by	a	manufacturer.	When	choosing	a	tool,	not	only	the	functional
aspects	but	also	constraints	that	must	be	fulfilled	for	the	tool	to	be	applicable	are
pertinent.	The	degree	of	brand	awareness,	for	instance,	and	the	reputation	of	the
provider	are	therefore	often	used	as	decision	criteria.	Due	to	the	relatively	high
acquisition	 cost	 and	 the	 long-term	 subscriptions	 to	 support	 services,	 a	 close
commitment	toward	the	provider	is	made.

9.5.6	Technical	View

The	tool’s	ability	to	perform	and	to	integrate

The	 technical	 view	 involves	 technical	 context	 conditions	 that	 the	 system	 is
expected	 to	meet.	 Important	aspects	 in	 the	 technical	view	are,	 for	 instance,	 the
ability	to	integrate	the	tool,	the	performance	of	the	used	repository,	the	necessary
hardware	 and	 software,	 and	 scalability	 of	 the	 tool.	 The	 ability	 of	 the	 tool	 to
integrate	 can	 be	 determined,	 for	 instance,	 by	 investigating	 to	what	 extend	 the
functionalities	 of	 the	 tool	 are	 accessible	 via	 an	 API	 and	 to	 what	 degree	 the
process,	data,	and	control	integration	is	possible.	The	scalability	of	the	tool	can
be	determined,	for	instance,	by	determining	the	maximum	number	of	users	that
can	be	maintained	or	the	maximum	number	of	objects	(e.g.,	content	packages	or
documents).	 The	 performance	 of	 the	 repository	 used	 can	 be	 measured	 by
determining	 the	 degree	 to	which	 importing	 and	 exporting	 data	 can	 be	 done	 as
well	as	by	determining	the	performance	of	the	query	interfaces	or	the	available
security	concepts.

9.5.7	Economic	View

Introduction	and	follow-up	costs

The	economic	view	regards	 the	possible	costs	 that	arise	due	 to	 the	acquisition,
introduction,	 and	 maintenance	 of	 a	 tool	 (e.g.,	 licensing	 costs,	 employee

instruction	 costs,	 and	 support	 costs).	 The	 amount	 of	 the	 relevant	 costs	 can
consist	 of	 the	 integration	 costs,	 costs	 of	 operation,	 maintenance	 and
infrastructure,	costs	for	method	tailoring,	and	acquisition	costs.

9.6	Summary

When	managing	requirements	during	requirements	engineering,	it	is	necessary	to
store	 the	 information	 in	 a	 way	 that	 the	 quality	 criteria	 for	 requirements
management	are	met.	Tools	support	the	requirements	engineer	in	doing	so.	These
tools	 can	 be	 differentiated	 into	 professional	 RM	 tools,	 modeling	 tools,	 and
standard	 office	 applications	 and	 differ	 from	 one	 another	 in	 the	 functionalities
that	 are	 offered	 to	 the	 requirements	 engineer.	 This	 is	 the	 reason	 an	 evaluation
must	 be	 done	 before	 a	 tool	 is	 selected,	 so	 as	 to	 not	 inhibit	 the	 introduction
process	unnecessarily.

References

[Akao	 1990]	Y.	Akao:	Quality	 Function	Deployment	 –	 Integrating	Customer	Requirements	 into	 Product
Design.	Productivity	Press,	Portland,	1990.

[Bandler	 1994]	 R.	 Bandler:	 Metasprache	 und	 Psychotherapie:	 Die	 Struktur	 der	 Magie	 I.	 Junfermann,
Paderborn,	1994.

[Bandler	 and	 Grinder	 1975]	 R.	 Bandler,	 J.	 Grinder:	 The	 Structure	 of	Magic	 II.	 Science	 and	 Behaviour
Books,	Palo	Alto	CA,	1975.

[Basili	et	al.	1996]	V.	Basili,	S.	Green,	O.	Laitenberger,	F.	Lanubile,	F.	Shull,	S.	Sörumsgard,	M.	Zelkowitz:
The	Empirical	Investigation	of	Perspective-Based	Reading.	Empirical	Software	Engineering,	Vol.	1,	No.
12,	Springer-Verlag,	Berlin,	Heidelberg,	1996,	pp.	133–144.

[Beck	 1999]	K.	 Beck:	 Extreme	 Programming	 Explained	 –	 Embrace	 Change.	 Addision-Wesley,	 Reading
MA,	1999.

[Boehm	1981]	B.	Boehm:	Software	Engineering	Economics.	Prentice	Hall,	Englewood	Cliffs,	1981.

[Boehm	 1984]	 B.	 Boehm:	 Verifying	 and	 Validating	 Software	 Requirements	 and	 Design	 Specifications.
IEEE	Software,	Vol.	1,	No.	1,	IEEE	Press,	Los	Alamitos,	1984,	pp.	75–88.

[Chaos	2006]	Standish	Group:	Chaos	Report,	2006.

[Chen	 1976]	 P.	 Chen:	 The	 Entity-Relationship	 Specification	 –	 Toward	 a	 Unified	 View	 of	 Data.	 ACM
Transactions	on	Database	Systems,	Vol.	1,	No.	1,	1976,	pp.	9–38.

[Chernak	 1996]	 Y.	 Chernak:	 A	 Statistical	 Approach	 to	 the	 Inspection	 Checklist	 Formal	 Synthesis	 and
Improvement.	IEEE	Transactions	on	Software	Engineering,	Vol.	22,	No.	12,	1996,	pp.	866-874.

[Cockburn	2001]	A.	Cockburn:	Writing	Effective	Use	Cases.	Addison-Wesley,	Reading,	MA,	2001.

[Conradi	 and	Westfechtel	 1998]	R.	Conradi,	B.	Westfechtel:	Version	Models	 for	Software	Configuration
Management.	ACM	Computing	Surveys,	Vol.	30,	No.	2,	1998,	pp.	232–282.

[Davis	 1993]	 A.	 M.	 Davis:	 Software	 Requirements	 –	 Objects,	 Functions,	 and	 States.	 Prentice	 Hall,
Englewood	Cliffs,	1993.

[DeBono	 2006]	 E.	 DeBono:	 Edward	 DeBono’s	 Thinking	 Course:	 Powerful	 Tools	 to	 Transform	 Your
Thinking.	BBC	Active,	Harlow,	2006.

[DeMarco	1978]	T.	DeMarco:	Structured	Analysis	 and	System	Specification.	Yourdon	Press,	New	York,

1978.

[Dömges	 and	 Pohl	 1998]	 R.	 Dömges,	 K.	 Pohl:	 Adapting	 Traceability	 Environments	 to	 Project-Specific
Needs.	Communications	of	the	ACM,	Vol.	41,	No.	12,	1998,	pp.	55–62.

[Easterbrook	 1994]	 S.	 Easterbrook:	 Resolving	 Requirements	 Conflicts	 with	 Computer-Supported
Negotiation.	In:	M.	Jirotka,	J.	Goguen	(eds.):	Requirements	Engineering	–	Social	and	Technical	Issues,
Academic	Press,	London,	1994,	pp.	41–65.

[Elmasri	and	Navathe	2006]	R.	Elmasri,	S.	B.	Navathe:	Fundamentals	of	Database	Systems.	5th	Edition,
Addison-Wesley,	Reading	MA,	2006.

[Gause	and	Weinberg	1989]	D.	C.	Gause,	M.	Weinberg:	Exploring	Requirements	–	Quality	before	Design.
Dorset	House,	New	York,	1989.

[Gilb	and	Graham	1993]	T.	Gilb,	D.	Graham:	Software	Inspection.	Addison-Wesley,	Reading	MA,	1993.

[Glass	and	Holyoak	1986]	A.	L.	Glass,	K.	J.	Holyoak:	Cognition.	Random	House,	New	York,	1986.

[Glinz	 and	 Wieringa	 2007]	 M.	 Glinz,	 R.	 Wieringa:	 Stakeholders	 in	 Requirements	 Engineering.	 IEEE
Software	24,	2,	2007,	pp.	18–20.

[Gotel	 and	 Finkelstein	 1994]	 O.	 Gotel,	 A.	 Finkelstein:	 An	 Analysis	 of	 the	 Requirements	 Traceability
Problem.	 In:	 Proceedings	 of	 the	 IEEE	 International	 Conference	 on	 Requirements	 Engineering
(ICRE’94),	1994,	pp.	94–102.

[Gottesdiener	 2002]	 E.	 Gottesdiener:	 Requirements	 by	 Collaboration:	 Workshops	 for	 Defining	 Needs.
Addison-Wesley	Longman,	Amsterdam,	2002.

[Harel	 1987]	 D.	 Harel:	 Statecharts	 –	 A	 Visual	 Formalism	 for	 Complex	 Systems.	 Science	 of	 Computer
Programming,	Vol.	8,	No.	3,	1987,	pp.	231–274.

[Hatley	and	Pirbhai	1988]	D.	J.	Hatley,	I.	A.	Pirbhai:	Strategies	for	Real	Time	System	Specification.	Dorset
House,	New	York,	1988.

[Hickey	and	Davis	2003]	A.	M.	Hickey,	A.	M.	Davis:	Elicitation	Technique	Selection:	How	Do	Experts	Do
It?	 Proceedings	 of	 the	 11th	 IEEE	 International	 Requirements	 Engineering	 Conference	 (RE’03),
Monterey	Bay,	USA,	2003,	pp.	169–178.

[IEEE	610.12-1990]	Institute	of	Electrical	and	Electronics	Engineers:	IEEE	Standard	Glossary	of	Software
Engineering	Terminology	(IEEE	Std.	610.12-1990).	IEEE	Computer	Society,	New	York,	1990.

[IEEE	 830-1998]	 Institute	 of	 Electrical	 and	 Electronics	 Engineers:	 IEEE	 Recommended	 Practice	 for
Software	Requirements	Specifications	(IEEE	Std.	830-1998).	IEEE	Computer	Society,	New	York,	1998.

[ISO/IEC	9126]	International	Organisation	for	Standardization:	Software	Engineering	–	Product	Quality	–
Part	1:	Quality	Model.	Geneva,	2001.

[ISO/IEC	 15504-5]	 International	 Organisation	 for	 Standardization:	 An	 Exemplar	 Process	 Assessment
Model.	Geneva,	2007.

[ISO/IEC	25010:2011]	International	Organization	for	Standardization:	Systems	and	software	engineering	–
Systems	and	software	Quality	Requirements	and	Evaluation	(SQuaRE)	–	System	and	software	quality
models,	Geneva	2011.

[ISO/IEC/IEEE	 29148:2011]	 International	 Organization	 for	 Standardization:	 Systems	 and	 software
engineering	–	Life	cycle	processes	–	Requirements	engineering,	Geneva,	2011.

[Jacobson	et	al.	1992]	 I.	 Jacobson,	M.	Christerson,	P.	 Jonsson,	G.	Oevergaard:	Object	Oriented	Software
Engineering	–	A	Use	Case	Driven	Approach.	Addison-Wesley,	Reading	MA,	1992.

[Jones	1998]	T.	C.	Jones:	Estimating	Software	Costs.	McGraw-Hill,	New	York,	1998.

[Kano	 et	 al.	 1984]	N.	Kano,	 S.	 Tsuji,	N.	 Seraku,	 F.	 Takahashi:	Attractive	Quality	 and	Must-be	Quality.
Quality	–	The	Journal	of	the	Japanese	Society	for	Quality	Control,	Vol.	14,	No.	2,	1984,	pp.	39–44.

[Karlsson	 and	Ryan	 1997]	 J.	Karlsson,	K.	 Ryan:	A	Cost-Value	Approach	 for	 Prioritizing	Requirements.
IEEE	Software,	Vol.	14,	No.	5,	IEEE	Press,	Los	Alamitos,	1997,	pp.	67–74.

[Keller	 et	 al.	 1992]	 G.	 Keller,	 M.	 Nüttgens,	 A.-W.	 Scheer:	 Semantische	 Prozeßmodellierung	 auf	 der
Grundlage	 »Ereignisgesteuerter	 Prozessketten	 (EPK)«.	 Publications	 of	 the	 institute	 for	 business
informatics	(IWi),	Saarland	University,	Issue	89,	Saarbrücken,	1992.

[Kosslyn	 1988]	 S.	 M.	 Kosslyn:	 Imagery	 in	 Learning.	 In:	 M.	 Gazzaniga	 (ed.):	 Perspectives	 in	Memory
Research,	The	MIT	Press,	Cambridge,	1988.

[Kruchten	2001]	P.	Kruchten:	The	Rational	Unified	Process:	An	Introduction,	Addison-Wesley,	2001.

[Laitenberger	 and	DeBaud	 2000]	O.	 Laitenberger,	 J.-M.	DeBaud:	An	 Encompassing	 Life	 Cycle	 Centric
Survey	of	Software	Inspection.	Journal	of	Systems	and	Software,	Vol.	50,	No.	1,	2000,	pp.	5–31.

[Lauesen	 2002]	 S.	 Lauesen:	 Software	Requirements	 –	 Styles	 and	Techniques,	Addison-Wesley,	 London,
2002.

[Lehtola	 and	 Kauppinen	 2006]	 L.	 Lehtola,	 M.	 Kauppinen:	 Suitability	 of	 Requirements	 Prioritization
Methods	 for	 Market-driven	 Software	 Product	 Development.	 Software	 Process	 –	 Improvement	 and
Practice,	Vol.	11,	No.	1,	2006,	pp.	7–19.

[Macaulay	1993]	L.	Macaulay:	Requirements	Capture	as	a	Cooperative	Activity.	In:	Proceedings	of	the	1st
IEEE	International	Symposium	on	Requirements	Engineering,	1993,	pp.	174–181.

[Maiden	and	Gizikis	2001]	N.	Maiden,	A.	Gizikis:	Where	Do	Requirements	Come	From?	IEEE	Software
18,	5,	2001,	pp.	10–12.

[McMenamin	 and	 Palmer	 1988]	 S.	M.	McMenamin,	 J.	 F.	 Palmer:	 Essential	 Systems	 Analysis.	 Prentice
Hall,	London,	1984.

[Mealy	1955]	G.	H.	Mealy:	A	Method	for	Synthesizing	Sequential	Circuits.	Bell	System	Technical	Journal,
Vol.	34,	No.	5,	1955,	pp.	1045–1079.

[Mietzel	 1998]	 G.	 Mietzel:	 Pädagogische	 Psychologie	 des	 Lernens	 und	 Lehrens.	 5th	 Edition,	 Hogrefe-
Verlag,	Göttingen,	1998.

[Moore	1956]	E.	F.	Moore:	Gedanken-Experiments	on	Sequential	Machines.	In:	C.	Shannon,	J.	McCarthy
(eds.):	Automata	Studies,	Princeton	University	Press,	Princeton,	1956,	pp.	129–153.

[Moore	2003]	C.	Moore:	The	Mediation	Process	–	Practical	Strategies	for	Resolving	Conflicts.	3rd	Edition,
Jossey-Bass,	San	Francisco,	2003.

[OMG	 2007]	 OMG:	 Unified	 Modeling	 Language:	 Superstructure,	 Version	 2.1.1.	 OMG	 document
formal/2007-02-05.

[Pohl	 1996]	 K.	 Pohl:	 Process-Centered	 Requirements	 Engineering.	 Research	 Study	 Press,	 Advanced
Software	Development,	Taunton,	Somerset,	1996.

[Pohl	 2008]	 K.	 Pohl:	 Requirements	 Engineering	 –	 Grundlagen,	 Prinzipien,	 Techniken.	 dpunkt.verlag,
Heidelberg,	2008.

[Pohl	 2010]	 K.	 Pohl:	 Requirements	 Engineering	 –	 Fundamentals,	 Principles,	 and	 Techniques.	 Springer,
New	York,	2010.

[Pohl	et	al.	2005]	K.	Pohl,	G.	Böckle,	F.	van	der	Linden:	Software	Product	Line	Engineering	–	Foundations,
Principles,	and	Techniques.	Springer-Verlag,	Berlin,	Heidelberg,	New	York,	2005.

[Potts	et	al.	1994]	C.	Potts,	K.	Takahashi,	A.	Antón:	Inquiry-Based	Requirements	Analysis.	IEEE	Software
11,	2,	1994,	pp.	21–32.

[Ramesh	1998]	B.	Ramesh:	Factors	Influencing	Requirements	Traceability	Practice.	Communications	of	the
ACM,	Vol.	41,	No.	12,	ACM	Press,	1998,	pp.	37–44.

[Ramesh	and	Jarke	2001]	B.	Ramesh,	M.	Jarke:	Toward	Reference	Models	for	Requirements	Traceability.
IEEE	Transactions	on	Software	Engineering	27,	1,	2001,	pp.	58-92.

[Robertson	2002]	J.	Robertson:	Eureka!	Why	Analysts	Should	Invent	Requirements.	IEEE	Software	19,	4,
2002,	pp.	20–22.

[Robertson	 and	 Robertson	 2006]	 S.	 Robertson,	 J.	 Robertson:	Mastering	 the	 Requirements	 Process.	 2nd
Edition,	Addison-Wesley,	Upper	Saddle	River,	2006.

[Rohrbach	1969]	B.	Rohrbach:	Kreativ	 nach	Regeln	 –	Methode	 635,	 eine	 neue	Technik	 zum	Lösen	von
Problemen.	Absatzwirtschaft	12,	Issue	19,	1969,	pp.	73–75.

[Royce	1987]	W.	W.	Royce:	Managing	the	Development	of	Large	Software	Systems.	In:	Proceedings	of	the
9th	 International	Conference	on	Software	Engineering	 (ICSE’87),	 IEEE	Computer	Society	Press,	Los
Alamitos,	1987,	pp.	328–338.

[Rumbaugh	et	al.	2005]	J.	Rumbaugh,	I.	Jacobson,	G.	Booch:	The	Unified	Modeling	Language	Reference
Manual.	2nd	Edition,	Addison-Wesley,	Boston,	2005.

[Rupp	 2014]	C.	Rupp:	Requirements-Engineering	 und	 -Management	 –	Aus	 der	 Praxis	 von	 klassisch	 bis
agil.	 Hanser-Verlag,	 Munich,	 2014.	 (Individual	 chapters	 also	 available	 in	 English	 on	 the	 SOPHIST
website:	http://www.sophist.de)	[Rupp	et	al.	2007]	C.	Rupp,	S.	Queins,	B.	Zengler:	UML	2	glasklar	–
Praxiswissen	für	die	UML-Modellierung.	Hanser-Verlag,	Munich,	2007.

[Saaty	1980]	T.	L.	Saaty:	The	Analytical	Hierarchy	Process.	McGraw-Hill,	New	York,	1980.

[SEI	2006]	Software	Engineering	Institute:	CMMI	for	Development	(CMMI-Dev),	V1.2,	Technical	Report
CMU/SEI-2006-TR-008	 –	 ESC-TR-2006-008.	 Carnegie	 Mellon,	 Software	 Engineering	 Institute,
Pittsburgh,	PA	2006.

[Shull	et	al.	2000]	F.	Shull,	I.	Rus,	V.	Basili:	How	Perspective-Based	Reading	Can	Improve	Requirements
Inspections.	IEEE	Computer,	Vol.	33,	No.	7,	2000,	pp.	73–79.

http://www.sophist.de

[Sommerville	2007]	I.	Sommerville:	Software	Engineering.	8th	Edition,	Pearson	Studium,	Boston,	2007.

[Stachowiak	1973]	H.	Stachowiak:	Allgemeine	Modelltheorie.	Springer-Verlag,	Vienna,	1973.

[van	 Lamsweerde	 et	 al.	 1991]	 A.	 van	 Lamsweerde,	 A.	 Dardenne,	 B.	 Delcourt,	 F.	 Dubisy:	 The	 KAOS
Project	 –	Knowledge	Acquisition	 in	Automated	 Specification	 of	 Software.	 In:	 Proceedings	 of	AAAI
Spring	Symposium	Series,	Stanford	University,	American	Association	for	Artificial	Intelligence,	1991,
pp.	69–82.

[V-Modell	 2004]	 V-Modell:	 V-Modell®	 XT,	 2004,	 Entwicklungsstandard	 für	 IT-Systeme	 des	 Bundes,
Bundesrepublik	Deutschland,	Vorgehensmodell.	www.kbst.bund.de

[Ward	and	Mellor	1985]	P.	Ward,	S.	Mellor:	Structured	Development	of	Real-Time	Systems	–	Introduction
and	Tools.	Vol.	1.	Prentice	Hall,	Upper	Saddle	River,	1985.

[Weinberg	1978]	V.	Weinberg:	Structured	Analysis.	Yourdon	Press,	New	York,	1978.

[Wiegers	1999]	K.	E.	Wiegers:	Software	Requirements.	Microsoft	Press,	Redmond,	1999.

[Yourdon	1989]	E.	Yourdon:	Modern	Structured	Analysis.	Prentice	Hall,	Englewood	Cliffs,	1989.

[Yu	1997]	E.	Yu:	Towards	Modelling	and	Reasoning	Support	for	Early-Phase	Requirements	Engineering.
In:	Proceedings	of	the	3rd	IEEE	International	Symposium	on	Requirements	Engineering	(RE’97),	IEEE
Computer	Society,	Los	Alamitos,	1997,	pp.	226–235.

http://www.kbst.bund.de

Klaus	Pohl

Requirements	Engineering
Fundamentals,	Principles,	and	Techniques
Springer-Verlag	2010
Hardcover
814	pages
ISBN	978-3-642-12577-5
www.requirements-book.com

In	 this	 textbook,	 Klaus	 Pohl	 provides	 a	 comprehensive	 and	 well-structured	 introduction	 to	 the
fundamentals,	 principles,	 and	 techniques	 of	 requirements	 engineering.	 He	 presents	 approved
techniques	 for	 eliciting,	 negotiating	 and	 documenting	 as	 well	 as	 validating,	 and	 managing
requirements	for	software-intensive	systems.	The	various	aspects	of	 the	process	and	the	techniques
are	illustrated	using	numerous	examples.

The	 book	 aims	 at	 professionals,	 students,	 and	 lecturers	 in	 systems	 and	 software	 engineering	 or
business	 applications	 development.	 Professionals	 such	 as	 project	 managers,	 software	 architects,
systems	analysts,	and	software	engineers	will	benefit	in	their	daily	work	from	the	didactically	well-
presented	combination	of	validated	procedures	and	industrial	experience.

Students	 and	 lecturers	 will	 appreciate	 the	 comprehensive	 description	 of	 sound	 fundamentals,
principles,	 and	 techniques,	 complemented	 by	 a	 commented	 list	 of	 references	 for	 further	 reading.

http://www.requirements-book.com

Lecturers	will	find	additional	teaching	material	on	www.requirements-book.com.

www.paluno.uni-due.de/en

http://www.requirements-book.com
http://www.paluno.uni-due.de/en

	About the Authors
	Title
	Copyright
	Foreword
	With Contributions from
	Contents
	1 Introduction and Foundations
	1.1 Introduction
	1.1.1 Figures and Facts from Ordinary Projects
	1.1.2 Requirements Engineering – What Is It?
	1.1.3 Embedding Requirements Engineering into Process Models

	1.2 Fundamentals of Communication Theory
	1.3 Characteristics of a Requirements Engineer
	1.4 Requirement Types
	1.5 Importance and Categorization of Quality Requirements
	1.6 Summary

	2 System and Context Boundaries
	2.1 System Context
	2.2 Defining System and Context Boundaries
	2.2.1 Defining the System Boundary
	2.2.2 Defining the Context Boundary

	2.3 Documenting the System Context
	2.4 Summary

	3 Eliciting Requirements
	3.1 Requirements Sources
	3.1.1 Stakeholders and Their Significance
	3.1.2 Handling Stakeholders in the Project

	3.2 Requirements Categorization According to the Kano Model
	3.3 Elicitation Techniques
	3.3.1 Types of Elicitation Techniques
	3.3.2 Survey Techniques
	3.3.3 Creativity Techniques
	3.3.4 Document-centric Techniques
	3.3.5 Observation Techniques
	3.3.6 Support Techniques

	3.4 Summary

	4 Documenting Requirements
	4.1 Document Design
	4.2 Types of Documentation
	4.2.1 The Three Perspectives of Requirements
	4.2.2 Requirements Documentation using Natural Language
	4.2.3 Requirements Documentation using Conceptual Models
	4.2.4 Hybrid Requirements Documents

	4.3 Document Structures
	4.3.1 Standardized Document Structures
	4.3.2 Customized Standard Contents

	4.4 Using Requirements Documents
	4.5 Quality Criteria for Requirements Documents
	4.5.1 Unambiguity and Consistency
	4.5.2 Clear Structure
	4.5.3 Modifiability and Extendibility
	4.5.4 Completeness
	4.5.5 Traceability

	4.6 Quality Criteria for Requirements
	4.7 Glossary
	4.8 Summary

	5 Documenting Requirements in Natural Language
	5.1 Effects of Natural Language
	5.1.1 Nominalization
	5.1.2 Nouns without Reference Index
	5.1.3 Universal Quantifiers
	5.1.4 Incompletely Specified Conditions
	5.1.5 Incompletely Specified Process Verbs

	5.2 Requirement Construction using Templates
	5.3 Summary

	6 Model-Based Requirements Documentation
	6.1 The Term Model
	6.1.1 Properties of Models
	6.1.2 Modeling Languages
	6.1.3 Requirements Models
	6.1.4 Advantages of Requirements Models
	6.1.5 Combined Use of Models and Natural Language

	6.2 Goal Models
	6.2.1 Goal Documentation Using AND/OR Trees
	6.2.2 Example of AND/OR Trees

	6.3 Use Cases
	6.3.1 UML Use Case Diagrams
	6.3.2 Use Case Specifications

	6.4 Three Perspectives on the Requirements
	6.5 Requirements Modeling in the Data Perspective
	6.5.1 Entity-Relationship Diagrams
	6.5.2 UML Class Diagrams

	6.6 Requirements Modeling in the Functional Perspective
	6.6.1 Data Flow Diagrams
	6.6.2 Models of the Functional Perspective and Control Flow
	6.6.3 UML Activity Diagrams

	6.7 Requirements Modeling in the Behavioral Perspective
	6.7.1 Statecharts
	6.7.2 UML State Diagrams

	6.8 Summary

	7 Requirements Validation and Negotiation
	7.1 Fundamentals of Requirements Validation
	7.2 Fundamentals of Requirements Negotiation
	7.3 Quality Aspects of Requirements
	7.3.1 Quality Aspect “Content”
	7.3.2 Quality Aspect “Documentation”
	7.3.3 Quality Aspect “Agreement”

	7.4 Principles of Requirements Validation
	7.4.1 Principle 1: Involvement of the Correct Stakeholders
	7.4.2 Principle 2: Separating the Identification and the Correction of Errors
	7.4.3 Principle 3: Validation from Different Views
	7.4.4 Principle 4: Adequate Change of Documentation Type
	7.4.5 Principle 5: Construction of Development Artifacts
	7.4.6 Principle 6: Repeated Validation

	7.5 Requirements Validation Techniques
	7.5.1 Commenting
	7.5.2 Inspection
	7.5.3 Walk-Through
	7.5.4 Perspective-Based Reading
	7.5.5 Validation through Prototypes
	7.5.6 Using Checklists for Validation

	7.6 Requirements Negotiation
	7.6.1 Conflict Identification
	7.6.2 Conflict Analysis
	7.6.3 Conflict Resolution
	7.6.4 Documentation of the Conflict Resolution

	7.7 Summary

	8 Requirements Management
	8.1 Assigning Attributes to Requirements
	8.1.1 Attributes for Natural Language Requirements and Models
	8.1.2 Attribute Scheme
	8.1.3 Attribute Types of Requirements

	8.2 Views on Requirements
	8.2.1 Selective Views on the Requirements
	8.2.2 Condensed Views on the Requirements

	8.3 Prioritizing Requirements
	8.3.1 Method for Requirements Prioritization
	8.3.2 Techniques for Requirements Prioritization

	8.4 Traceability of Requirements
	8.4.1 Advantages of Traceable Requirements
	8.4.2 Purpose-Driven Definition of Traceability
	8.4.3 Classification of Traceability Relations
	8.4.4 Representation of Requirements Traceability

	8.5 Versioning of Requirements
	8.5.1 Requirements Versions
	8.5.2 Requirements Configurations
	8.5.3 Requirements Baselines

	8.6 Management of Requirements Changes
	8.6.1 Requirements Changes
	8.6.2 The Change Control Board
	8.6.3 The Change Request
	8.6.4 Classification of Incoming Change Requests
	8.6.5 Basic Method for Corrective and Adaptive Changes

	8.7 Measurement of Requirements
	8.7.1 Product vs. Process Metric
	8.7.2 Examples of Product and Process Metrics

	8.8 Summary

	9 Tool Support
	9.1 General Tool Support
	9.2 Modeling Tools
	9.3 Requirements Management Tools
	9.3.1 Specialized Tools for Requirements Management
	9.3.2 Standard Office Applications

	9.4 Introducing Tools
	9.5 Evaluating Tools
	9.5.1 Project View
	9.5.2 User View
	9.5.3 Product View
	9.5.4 Process View
	9.5.5 Provider View
	9.5.6 Technical View
	9.5.7 Economic View

	9.6 Summary

	References

